

Installation and Maintenance Manual

IM 1091-1

Group: **Applied Air Systems**Part Number: **92-102421-41-00**

Date: February 2016

Maverick® I Packaged Heat Pumps

Featuring Earth-friendly R410A Refrigerant Series 3 and 6 tons Model 60 Hz

Safety Information3
Introduction4
Checking Product Received4
Equipment Protection from the Environment 4
R-410A Refrigerant5
Unit Dimensions6
Installation12
General
Outside Slab Installation
Clearances12
Rooftop Installation
Ductwork
Filters
Conversion Procedure Downflow to Horizontal 13
Condensate Drain
Condensate Drain, Outdoor Coil
Electrical Wiring
Thermostat15
Start Up
Indoor Air Flow Data17
Crankcase Heat
Pre-Start Check
Start I In 17

Operation
Control System Operation
Auxiliary Heat18
Demand Defrost Control
Replacement Parts19
Charge Information
Troubleshooting
Wiring Diagrams19
Physical Data20
Unit Capacity and Physical Data 20
Electrical Data26
Performance Data28
MCA and MCOP40
Compressor and Condenser Motor 40
Wiring Diagrams43
Charging Charts
Trouble Shooting Chart

Recognize these symbols as A A an indication of important safety information

/î\ NOTICE

These instructions are intended as an aid to qualified, licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

⚠ CAUTION

IMPORTANT: all manufacturer products meet current federal OSHA guidelines for safety. California Proposition 65 warnings are required for certain products, which are not covered by the osha standards.

California's Proposition 65 requires warnings for products sold in California that contain, or produce, any of over 600 listed chemicals known to the state of California to cause cancer or birth defects such as fiberglass insulation, lead in brass, and combustion products from natural gas.

All "new equipment" shipped for sale in California will have labels stating that the product contains and/or produces Proposition 65 chemicals. Although we have not changed our processes, having the same label on all our products facilitates manufacturing and shipping. We cannot always know "when, or if"products will be sold in the California market.

You may receive inquiries from customers about chemicals found in, or produced by, some of our heating and airconditioning equipment, or found in natural gas used with some of our products. Listed below are those chemicals and substances commonly associated with similar equipment in our industry and other manufacturers.

- · Glass wool (fiberglass) insulation
- Carbon Monoxide (CO)
- Formaldehyde
- Benzene

More details are available at the websites for OSHA

(Occupational Safety and Health Administration), at www. osha.gov and the state of California's OEHHA (Office of Environmental Health Hazard Assessment), at www.oehha. org. Consumer education is important since the chemicals and substances on the list are found in our daily lives. Most consumers are aware that products present safety and health risks, when improperly used, handled and maintained.

⚠ DANGER

Disconnect all power to the unit before starting maintenance. Failure to do so can result in severe electrical shock or death.

∕ WARNING

Do not, under any circumstances, connect return ductwork to any other heat producing device such as a fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, property damage, severe personal injury or death.

∕Ñ DANGER

The unit must be permanently grounded. A grounding lug is provided in the electric heat kit for a ground wire. (See Figure 16 and Figure 17) Failure to ground this unit can result in fire or electrical shock causing property damage, severe personal injury or death.

/ DANGER

Only electric heater kits supplied by this manufacturer as described in this publication have been designed, tested, and evaluated by a nationally recognized safety testing agency for use with this unit. Use of any other manufactured electric heaters installed within this unit may cause hazardous conditions resulting in property damage, fire, bodily injury or death.

№ WARNING

Proposition 65: this appliance contains fiberglass insulation. Respirable particles of fiberglass are known to the state of California to cause cancer.

№ WARNING

R-410a systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410a equipment.

This booklet contains the installation and operating instructions for your package heat pump. There are a few precautions that should be taken to derive maximum satisfaction from it. Improper installation can result in unsatisfactory operation or dangerous conditions.

Read this booklet and any instructions packaged with separate equipment required to make up the system prior to installation. Give this booklet to the owner and explain its provisions. The owner should retain this booklet for future reference.

NOTE: A load calculation must be performed to properly determine the required heating and cooling for the structure. Also, the duct must be properly designed and installed for proper airflow. Existing dutwork must be inspected for proper size and sealed system. Proper airflow is necessary for both user comfort and equipment performance.

IMPORTANT: Proper application, installation and maintenance of this equipment is a must if consumers are to receiver the full benefit for which they have paid.

Checking Product Received

Upon receiving the unit, inspect it for any damage from shipment. Claims for damage, either shipping or concealed, should be filed immediately with the shipping company. Check the unit model number, heating size, electrical characteristics, and accessories to determine if they are correct.

Equipment Protection from the Environment

A DANGER

Disconnect all power to the unit before starting maintenance. Failure to do so can result in severe electrical shock or death.

The metal parts of this unit may be subject to rust or deterioration in adverse environmental conditions. This oxidation could shorten the equipment's useful life. Salt spray, fog or mist in seacoast areas, sulphur or chlorine from lawn watering systems, and various chemical contaminants from industries such as paper mills and petroleum refineries are especially corrosive.

If the unit is to be installed in an area where contaminants are likely to be a problem, special attention should be given to the equipment location and exposure.

- Avoid having lawn sprinkler heads spray direction on the unit cabinet.
- In coastal areas, locate the unit on the side of the building away from the waterfront.
- Shielding provided by a fence or shrubs may give some protection.

Regular maintenance will reduce the buildup of contaminents and help to protect the unit's finish.

- Frequent washing of the cabinet, fan blade and coil with fresh water will remove most of the salt or other contaminants that build up on the unit.
- 2. Regular cleaning and waxing of the cabinet with a good automobile polish will provide some protection.
- 3. A good liquid cleaner may be used several times a year to remove matter that will not wash off with water.

Several different types of protective coatings are offered in some areas. These coatings may provide some benefit, but the effectiveness of such coating materials cannot be verified by the equipment manufacturer.

The best protection is frequent cleaning, maintenance and minimal exposure to contaminants.

R-410A Refrigerant

⚠ CAUTION

R-410A systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment.

All units are factory charged with R-410A refrigerant.

1. Specification of R-410A:

Application: R-410A is not a drop-in replacement for R-22; equipment designs must accommodate its higher pressures. It cannot be retrofitted into R-22 units.

Pressure: The pressure of R-410A is approximately 60% (1.6 times) greater than R-22. Recovery and recycle equipment, pumps, hoses and the like need to have design pressure ratings appropriate for R-410A. Manifold sets need to range up to 800 psig high-side and 250 psig low-side with a 550 psig low-side retard. Hoses need to have a service pressure rating of 800 psig. Recovery cylinders need to have a 400 psig service pressure rating. DOT 4BA400 or DOT BW400.

Combustibility: At pressures above 1 atmosphere, mixture of R-410A and air can become combustible.

R-410A and air should never be mixed in tanks or supply lines, or be allowed to accumulate in storage tanks. Leak checking should never be done with a mixture of R-410A and air. Leak checking can be performed safely with nitrogen or a mixture of R-410A and nitrogen.

- 2. Quick Reference Guide For R-410A
 - R-410A refrigerant operates at approximately 60% higher pressure (1.6 times) than R22. Ensure that servicing equipment is designed to operate with R-410A.
 - R-410A refrigerant cylinders are pink.
 - R-410A, as with other HFC's is only compatible with POE oils.
 - Vacuum pumps will not remove moisture from POE oil.
 - R-410A systems are to be charged with liquid refrigerants. Prior to March 1999, R-410A refrigerant cylinders had a dip tube. These cylinders should be kept upright for equipment charging. Post March 1999 cylinders do not have a dip tube and should be inverted to ensure liquid charging of the equipment.
 - Do not install a suction line filter drier in the liquid line.
 - · A liquid line filter drier is standard on every unit.
 - Desiccant (drying agent) must be compatible for POE oils and R-410A.

3. Evaporator Coil / TXV

The thermostatic expansion valve is specifically designed to operate with R-410A. DO NOT use an R-22 TXV. The existing evaporator must be replaced with the factory specified TXV evaporator specifically designed for R-410A.

- 4. Tools Required For Installing & Servicing R-410A Models Manifold Sets:
 - Up to 800 PSIG High side
 - Up to 250 PSIG Low Side
 - 50 PSIG Low Side Retard

Manifold Hoses:

Service Pressure Rating of 800 PSIG

Recovery Cylinders:

- 400 PSIG Pressure Rating
- Dept. of Transportation 4BA400 or BW400

Figure 1: 003-005 Ton Dimensions - Bottom

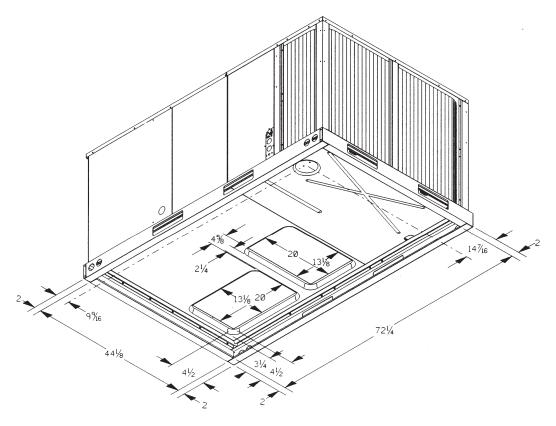


Figure 2: 003-005 Ton Dimensions - Front

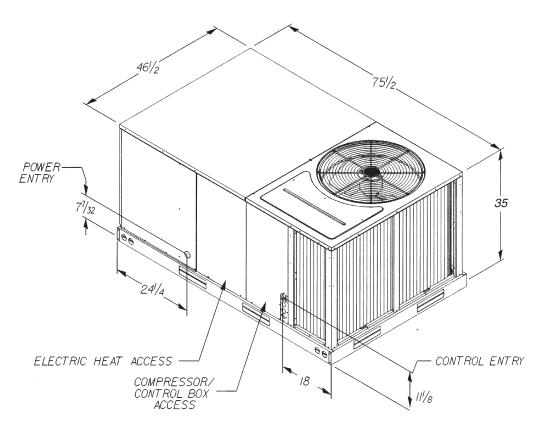


Figure 3: 003-005 Ton Dimensions - Rear

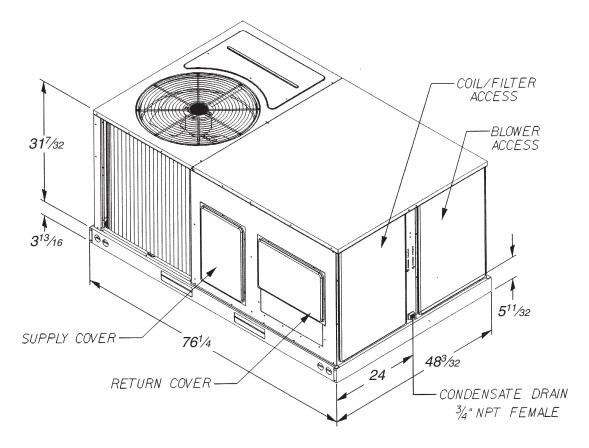


Figure 4: 003-005 Ton Dimensions - Side

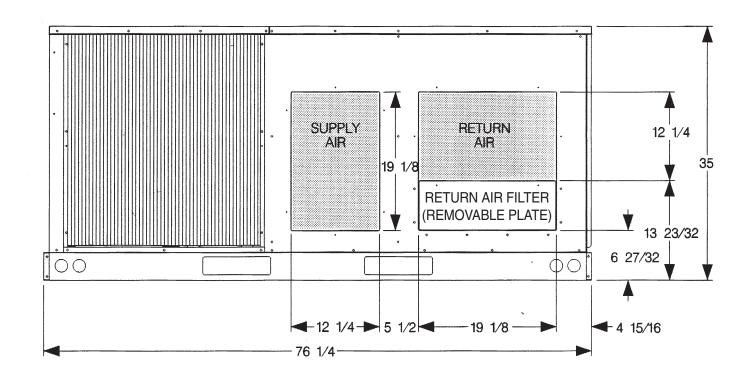


Figure 5: 006 Ton Dimensions – Bottom

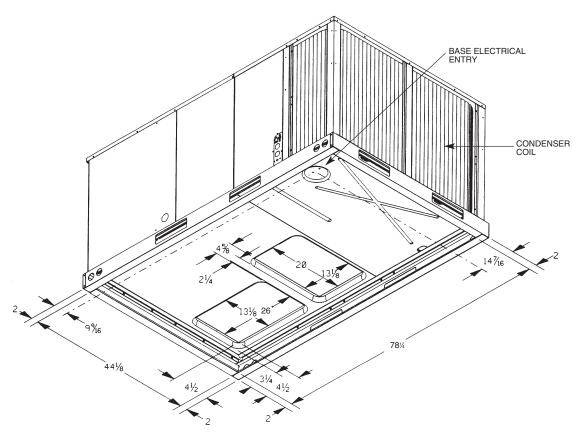


Figure 6: 006 Ton Dimensions – Front

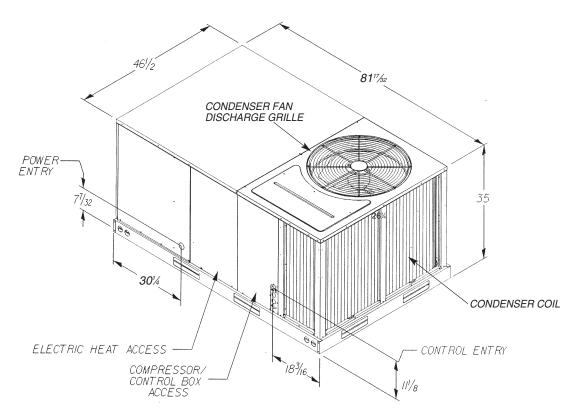


Figure 7: 006 Ton Dimensions – Rear

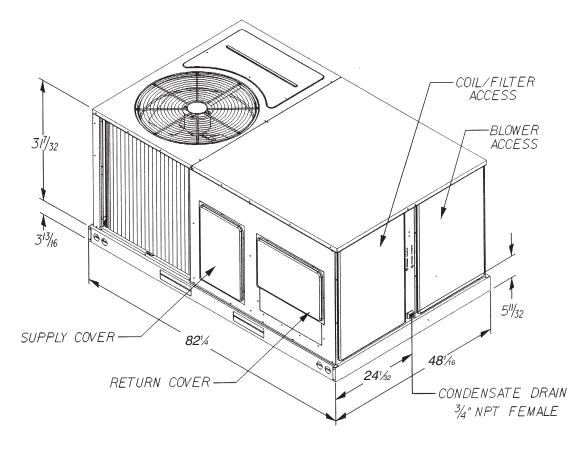


Figure 8: 006 Ton Dimensions - Side

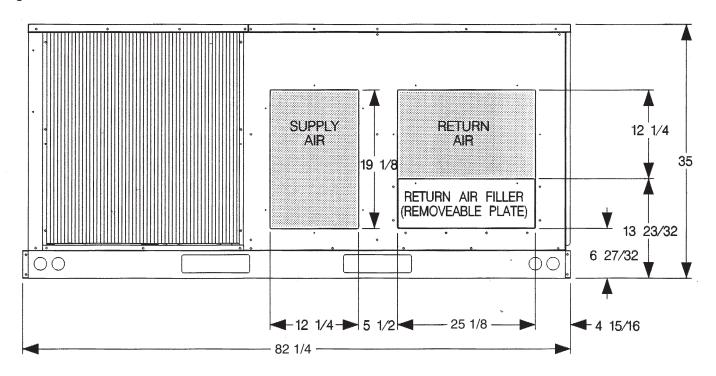


Figure 9: Outside Slab Installation

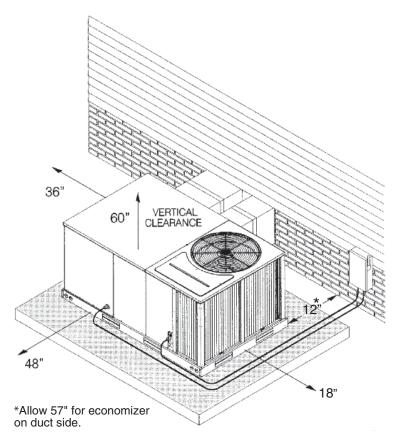


Figure 10: Lifting Rigging

Capacity Tons [kW]	A in. [mm]	B in. [mm]
3-5 [10.6-17.6]	381/4 [972]	25¾ [654]
6 [21.1]	39 [991]	26½ [664]

Capacity Tons [kW]	Corn	er Weight	by Percer	ntage
	Α	В	С	D
3-5 [10.6-17.6]	22%	27%	23%	28%
6 [21.1]	23%	29%	21%	27%

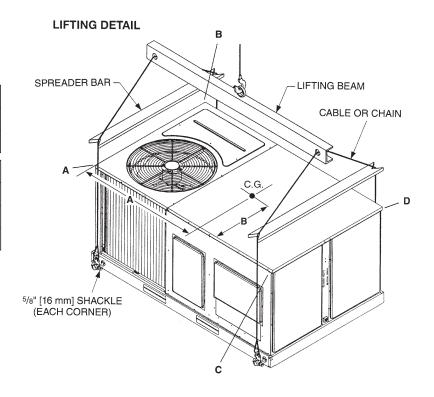


Figure 11: Roof Curb Installation

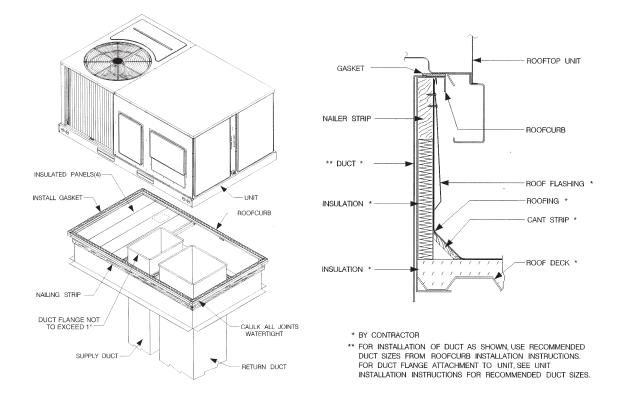


Figure 12: Flat Rooftop Installation

Attic or Drop Ceiling Distribution System Mounted on Roof Curb must be Level

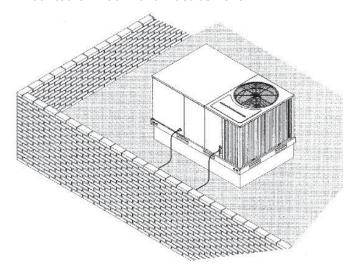
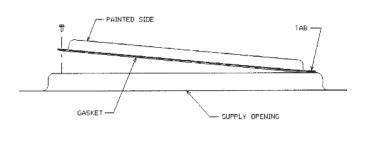



Figure 13: Cover Gasket Detail

General

1. Pre-Installation Check-Points

Before attempting any installation, the following points should be carefully considered:

- Structural strength of supporting members. (rooftop installation)
- b. Clearances and provision for servicing.
- c. Power supply and wiring.
- d. Air duct connections.
- Drain facilities and connections.
- f. Location for minimum noise.

2. Location

These units are designed for outdoor installations. They can be mounted on a slab or rooftop. They are not to be installed within any part of a structure such as an attic, crawl space, closet, or any other place where condenser air flow is restricted or other than outdoor ambient conditions prevail. Since the application of the units is of the outdoor type, it is important to consult your local code authorities at the time the first installation is made.

Outside Slab Installation

(Typical outdoor slab installations are shown in Figure 9)

- Select a location where external water drainage cannot collect around the unit.
- Provide a level concrete slab extending 3" beyond all four sides of the unit. The slab should be sufficient above grade to prevent ground water from entering the unit.

IMPORTANT: To prevent transmission of noise or vibration, slab should not be connected to building structure.

- 3. The location of the unit should be such as to provide proper access for inspection and servicing.
- Locate unit where operating sounds will not disturb owner or neighbors.
- Locate unit so roof runoff water does not pour directly on the unit. Provide gutter or other shielding at roof level. Do not locate unit in an area where excessive snow drifting may occur or accumulate.
- 6. It is essential that the unit be elevated above the base pad to allow for condensate drainage and possible refreezing of condensation. Provide a base pad which is slightly pitched away from the structure. Route condensate off base pad to an area which will not become slippery and result in personal injury.
- Where snowfall is anticipated, the height of the unit above the ground level must be considered. Mount unit high enough to be above average area snowfall and to allow for proper condensate drainage.

Clearances

The following minimum clearances must be observed for proper unit performance and serviceability.

- Provide 48' minimum clearance at the front of the unit.
 Provide 36' minimum clearance at the left and right side of the unit for service access.
- 2. Provide 60' minimum clearance between top of unit and maximum 3 foot overhang.
- 3. Unit is design certified for application on combustible flooring with 0' minimum clearance.
- See Figure 9 for illustration of minimum installationservice clearances.

Rooftop Installation

- Before locating the unit on the roof, make sure that the strength of the roof and beams is adequate at that point to support the weight involved. (See specification sheet for weight of unit.) This is very important and user's responsibility.
- For rigging (Figure 10) and roofcurb details (Figure 11). Use field-furnished spreaders.
- 3. For roofcurb assembly, see Roofcurb Installation Instructions .
- If the roofcurb is not used, provisions for disposing of condensate water runoff during defrosting must be provided.
- 5. The unit should be placed on a solid and level roofcurb or platform of adequate strength. See Figure 12.
- 6. The location of the unit on the roof should be such as to provide proper access for inspection and servicing.

IMPORTANT: If unit will not be put into service immediately, cover supply and return openings to prevent excessive condensation.

Ductwork

Ductwork should be fabricated by the installing contractor in accordance with local codes and NFPA90A. Industry manuals may be used as a guide when sizing and designing the duct system - contact Air Conditioning Contractors of America, 1513 16th St. N.W., Washington, D.C. 20036.

A WARNING

Do not, under any circumstances, connect return ductwork to any other heat producing device such as a fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, property damage, severe personal injury or death.

The unit should be placed as close to the space to be air conditioned as possible allowing clearance dimensions as indicated. Ducts should be run as directly as possible to supply and return outlets. Use of non-flammable waterproof flexible connectors on both supply and return connections at the unit to reduce noise transmission is recommended.

It is preferable to install the unit on the roof of the structure if the registers or diffusers are located on the wall or in the ceiling. A slab installation could be considered when the registers are low on a wall or in the floor.

On ductwork exposed to outside air conditions of temperature and humidity, use a minimum of 2' of insulation and a vapor barrier. Distribution system in attic, furred space or crawl space should be insulated with at least 2' of insulation with vapor barrier. One-half to 1' thickness of insulation is usually sufficient for ductwork inside the air conditioned space.

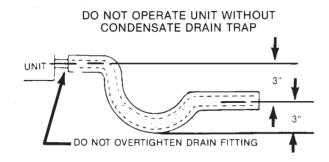
Balancing dampers should be provided for each branch duct in the supply system. Ductwork should be properly supported from the structure.

When installing ductwork, consider the following items:

- Noncombustible flexible connectors should be used between ductwork and unit to reduce noise and vibration transmission into the ductwork.
- When auxiliary heaters are installed, use noncombustible flexible connectors and clearance to combustible material of 0' for the first 3 feet of discharge duct. Clearance to unit top and side is 0'.

Filters

This unit is provided with $2 - 25' \times 16' \times 1'$ (3-5 ton) $4 - 16' \times 16' \times 1'$ (6 ton) disposable filters. When replacing filters, ensure they are inserted fully to the back to prevent bypass.


Conversion Procedure Downflow to Horizontal

- Remove the screws and covers from the outside of the supply and return sections.
- Install the covers in the bottom supply and return openings with the painted side up. See Figure 7. Use the existing gasket to seal the covers. Secure the supply cover to the base of the unit with 1 screw, engaging prepunched tab in unit base.
- Secure the return cover to the base of the unit with screws, engaging prepunched holes in the unit base.

Condensate Drain

The condensate drain connection of the evaporator is 3/4" nominal female pipe thread. IMPORTANT: Install a condensate trap to ensure proper condensate drainage. See Figure 14.

Figure 14: Condensate Drain Detail

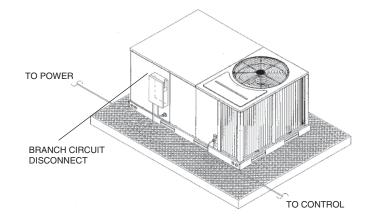
Condensate Drain, Outdoor Coil

The outdoor coil during heating operation will sweat or run water off. The outdoor coil will also run water off during the defrost cycle. See Unit Dimensions on page 6, Installation, for mounting precautions.

Power Wiring

Field wiring must comply with the National Electrical Code (C.E.C. in Canada) and local ordinances that may apply.

- It is important that proper electrical power is available at the unit. Voltage should not vary more than 10% from that stamped on the unit rating plate. On three phase units, phases must be balanced within 3%.
- Install a branch circuit disconnect within sight of the unit and of adequate size to handle the starting current. A bracket is supplied with the unit for mounting a disconnect to the unit. Refer to Figure 15 for proper location.
- 3. For branch circuit wiring (main power supply to unit disconnect), the minimum wire size can be determined from Table 1 using the circuit ampacity found on the unit nameplate or from the Electrical Data.
- 4. This unit incorporates single point electrical connection for unit and electric heat accessory.
- 5. Power wiring must be run in grounded rain-tight conduit. Connect the power field wiring as follows:
 - a. NO ELECTRIC HEAT Connect the field wires directly to the contactor pigtails in the electric heat access area. Connect ground wire to ground lug.
 - b. WITH ELECTRIC HEAT Connect the field wires to the terminal block on the electric heater kit in the electric heat access area. Connect the ground wire to the ground lug on the heater kit.


NOTE: For field installation of a heater kit, follow the instructions provided with the heater kit.

- 6. The pigtail wires in the electric heat access area are factory wired to the contactor in the control box.
- 7. DO NOT connect aluminum field wires to electric heat kit power input terminals.

Table 1: Wire Sizes

AWG Copper Wire Sizes	AWG Aluminum Wire Sizes	Connector Type and Size (or equivalent)					
#12	#10	T&B Wire Nut	PT-2				
#10	#8	T&B Wire Nut	PT-3				
#8	#6	Ilsco Split Bolt	AK-6				
#6	#4	Ilsco Split Bolt	AK-4				
#4	#2	Ilsco Split Bolt	AK-2				
#3	#1	Ilsco Split Bolt	AK-1/0				
#2	#0	Ilsco Split Bolt	AK-1/0				
#1	#00	Ilsco Split Bolt	AK-2/0				
#0	#000	Ilsco Split Bolt	AK-4/0				

Figure 15: Branch Circuit Disconnect Location

Special Instructions for Power Wiring with Aluminum Conductors.

- Select the equivalent aluminum wire size from the tabulation below:
- Attach a length (6" or more) of recommended size copper wire to the unit terminals L1 and L3 for single phase, L1, L2, L3 for three phase.
- Splice copper wire pigtails to aluminum wire with U.L. recognized connectors for copper-aluminum splices. Follow these instructions very carefully to make a positive and lasting connection;
 - a. Strip insulation from aluminum conductor.
 - b. Coat the stripped end of the aluminum wire with the recommended inhibitor and wire brush aluminum surface through inhibitor. Inhibitors: Brundy, Pentex "A"; Alcoa, No. 2EJC; T&B KPOR Shield.
 - c. Clean and recoat aluminum conductor with inhibitor.
 - Make the splice using the above listed wire nuts or split bolt connectors.
 - e. Coat the entire connection with inhibitor and wrap with electrical insulating tape.

WARRANTY MAY NOT APPLY IF CONNECTIONS ARE NOT MADE PER INSTRUCTIONS

Control Wiring (Class II)

- Low voltage wiring should not be run in conduit with power wiring.
- Control wiring is routed through the 7/8" hole adjacent to the compressor access panel. See Figure 2. Use a minimum #18 AWG thermostat wire. For wire lengths exceeding 50', use #16 AWG thermostat wire. The low voltage wires are connected to the unit pigtails which are supplied with the unit below the unit control box.
- 3. It is necessary that only heat pump thermostats be used.
- Figure 17 shows representative low voltage connection diagrams. Read your thermostat installation instructions for any special requirements for your specific thermostat.

NOTE: Units installed in Canada require that an outdoor thermostat (30,000 min. cycles of endurance) be installed and be wired with C.E.C. Class I wiring.

Internal Wiring

A diagram of the internal wiring of this unit is located on the inside of the compressor access panel. If any of the original wire as supplied with the appliance must be replaced, the wire gauge and insulation must be the same as original wiring.

IMPORTANT: Some single phase units are equipped with a single pole contactor. Caution must be exercised when servicing as only one leg of the power supply is broken with the contactor. Some models are equipped with electrically commutated blower motors which are constantly energized unless the main unit disconnect is in the OFF position.

Grounding

MARNING

The unit must be permanently grounded. A grounding lug is provided in the electric heat access area for a ground wire. Failure to ground this unit can result in fire or electrical shock causing property damage, severe personal injury or death.

Thermostat

The thermostat should be mounted on an inside wall about five feet above the floor in a location where it will not be affected by unconditioned air, sun, or drafts from open doors or other sources. READ installation instructions in heat pump thermostat package CAREFULLY because each has some different wiring requirements.

Figure 16: Heater Kit Installation

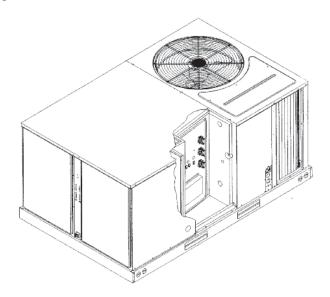
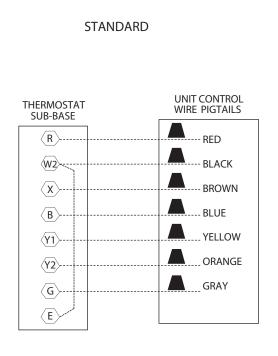
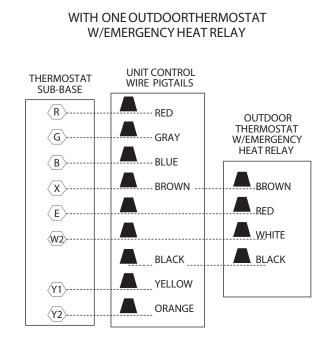




Figure 17: Voltage Connections Diagrams

NOTES: IF EMERGENCY HEAT RELAY AND OUTDOORTHERMOSTATS ARE NOT USED, A JUMPER BETWEEN "W2" AND "E" CAN BE INSTALLED TO TRANSFER CONTROL OF HEATING TO THE FIRST STAGE WHEN THE SYSTEM SWITCH IS IN THE EMERGENCY HEAT POSITION.

Y2 IS ONLY USED WITH OPTIONAL ECONOMIZER.

Table 2: Copper Wire Size – AWG (1% Voltage Drop)

-	300	4	3	2	2	1	1/0	1/0	2/0	2/0	3/0	3/0	3/0	4/0	4/0	4/0	4/0	250	250	250	250	300	300	300	300	300	350	350	350	350
Supply Wire Length (ft)	250	4	4	3	3	2	1	1	1/0	1/0	1/0	2/0	2/0	2/0	3/0	3/0	3/0	4/0	4/0	4/0	4/0	4/0	250	250	250	250	350	350	350	350
\$ 	200	6	4	4	4	3	2	2	1	1	1/0	1/0	1/0	2/0	2/0	2/0	3/0	3/0	3/0	3/0	3/0	4/0	4/0	4/0	4/0	4/0	300	300	300	300
ld Bu	150	8	6	6	4	4	4	3	3	2	2	1	1	1/0	1/0	1/0	1/0	2/0	2/0	2/0	2/0	2/0	3/0	3/0	3/0	3/0	4/0	4/0	4/0	4/0
Sup Le Sup	100	10	8	8	6	6	6	4	4	4	3	3	2	2	2	1	1	1	1	1	1/0	1/0	1/0	1/0	1/0	1/0	1/0	2/0	2/0	2/0
	50	14	12	10	10	8	8	6	6	6	4	4	4	3	3	3	2	2	2	2	2	1	1	1	1	1/0	1/0	1/0	1/0	2/0
		15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155
	Circuit Ampacity																													
	NOTES: 1. Wire size based on 60°C type copper conductors below 100 ampacity.																													
				2. Wir	e size	base	d on 7	5°C typ	e cop	per cor	nducto	rs belo	w 100	ampa	city an	d abov	/e.													

Indoor Air Flow Data

Direct-drive blower models are shipped factory wired for the proper speed at a typical external static. Belt-drive blower models have motor sheaves set for proper CFM at a typical external static.

Crankcase Heat

Crankcase heat is standard on 7-1/2 & 10 ton models. The auxiliary switch on the compressor contactor turns off the heater when the compressor is running.

Pre-Start Check

- Is unit properly located and slightly slanted toward indoor condensate drain?
- 2. Is ductwork insulated, weatherproofed, with proper spacing to combustible materials?
- 3. Is air free to travel to and from outdoor coil? (See Figure 9)
- 4. Is the wiring correct, tight, and according to unit wiring diagram?
- 5. Is unit grounded?
- 6. Are field supplied air filters in place and clean?
- 7. Do the outdoor fan and indoor blower turn freely without rubbing, and are they tight on the motor shafts?
- 8. Is unit elevated to allow for outdoor coil condensate drainage during heating operation and defrost?

Start Up

- Turn thermostat to "OFF," turn "ON" power supply at disconnect switch.
- 2. Turn temperature setting as high as it will go.
- 3. Turn fan switch to "ON."
- Indoor blower should run. Be sure it is running in the right direction
- 5. Turn fan switch to "AUTO." Turn system switch to "COOL" and turn temperature setting below room temperature. Unit should run in cooling mode.
- 6. Is outdoor fan operating correctly in the right direction?
- 7. Is compressor running correctly.
- Turn thermostat system switch to "HEAT." Unit should stop. Wait 5 minutes, then raise temperature setting to above room temperature. Unit should run in heating mode and after about 30 to 50 seconds auxiliary heaters, if installed, should come ON.

- Check the refrigerant charge using the instructions located on compressor access panel cover. Replace service port caps. Service port cores are for system access only and will leak if not tightly capped.
- Turn thermostat system switch to proper mode "HEAT" or "COOL" and set thermostat to proper temperature setting. Record the following after the unit has run some time.

A. Operating Mode	• •
B. Discharge Pressure (High)	iG
C. Vapor Pressure at Compressor (Low)PS	iG
D. Vapor Line Temperature at Compressor	°F.
E. Indoor Dry Bulb	°F.
F. Indoor Wet Bulb	°F.
G. Outdoor Dry Bulb	°F.
H. Outdoor Wet Bulb	°F.
I. Voltage at Contactor	olts
J. Current at Contactor Am	ıps
K. Model Number	
L. Serial Number	
M. Location	
N. Owner	
0. D. (

- 11. Adjust discharge air grilles and balance system.
- 12. Check ducts for condensation and air leaks.
- 13. Check unit for tubing and sheet metal rattles.
- 14. Instruct the owner on operation and maintenance.
- 15. Leave "INSTALLATION" and "USE AND CARE" instructions with owner

Most single phase units are operated PSC (no start relay or start capacitor). It is important that such systems be off for a minimum of 5 minutes before restarting to allow equalization of pressures. The thermostat should not be moved to cycle unit without waiting five minutes. To do so may cause the compressor to stop on an automatic open overload device or blow a fuse. Poor electrical service can cause nuisance tripping in overloads or blow fuses.

IMPORTANT: The compressor has an internal overload protector. Under some conditions, it can take up to 2 hours for this overload to reset. Make sure overload has had time to reset before condemning the compressor.

Some units are equipped with a time delay control (TDC1). The control allows the blower to operate for up to 90 seconds after the thermostat is satisfied.

Control System Operation

- In the cooling mode, the thermostat will, on a call for cooling, energize the compressor contactor and the indoor blower relay. The indoor blower can be operated continuously by setting the thermostat fan switch at the "ON" position. The reversing valve coil is de-energized.
- 2. In the heating mode, the first heat stage of the thermostat will energize the compressor contactor and the indoor blower relay. The second heat stage will turn on one or more supplementary resistance heaters. The reversing valve is energized except in defrost. If required or considered desirable, the resistance heat may also be controlled by outdoor thermostats.

Auxiliary Heat

∕**∖** WARNING

Only electric heater kits supplied by this manufacturer as described in this publication have been designed, tested, and evaluated by a nationally recognized safety testing agency for use with this unit. Use of any other manufactured electric heaters installed within this unit may cause hazardous conditions resulting in property damage, fire, bodily injury or death.

The amount of auxiliary heat required depends on the heat loss of the structure to be heated and the capacity of the heat pump. It is good practice to install strip heat to maintain at least 60°F indoor temperatures in case of compressor failure. The auxiliary heat is energized by the second stage of the thermostat. The amount of electric heat that is allowed to come on, as determined by the output of the heat pump, may be controlled by an outdoor thermostat.

Demand Defrost Control

The demand defrost control is a printed circuit board assembly consisting of solid state control devices with electro-mechanical outputs. The demand defrost control monitors the outdoor ambient temperature, outdoor coil temperature, and the compressor runtime to determine when a defrost cycle is required.

Enhanced Feature Demand Defrost Control (6 ton unit only): Defrost control has high and low pressure control inputs with unique pressure switch logic built into the microprocessor to provide compressor and system protection without nuisance lock-outs. Cycles the compressor OFF for 5 seconds at the beginning and end of the defrost cycle to eliminate the increased compressor noise caused by rapidly changing system pressures when the reversing valve switches. See High/Low Pressure Control Monitoring Section below for diagnostic flash codes for the two diagnostic LED's provided on the control.

Defrost Initiation

A defrost will be initiated when the three conditions below are satisfied:

- 1. The outdoor coil temperature is below 35°F.
- 2. The compressor has operated for at least 34 minutes with the outdoor coil temperature below 35°F.
- The measured difference between the ambient temperature and the outdoor coil temperature is greater than the calculated delta T.

Additionally, a defrost will be initiated if six hours of accumulated compressor run-time has elapsed without a defrost with the outdoor coil temperature below 35°F.

Defrost Termination

Once a defrost is initiated, the defrost will continue until fourteen minutes has elapsed or the coil temperature has reached the terminate temperature. The terminate temperature is factory set at 70°F, although the temperature can be changed to 50°F, 60°F, 70°F or 80°F by relocating a jumper on the board.

Temperature Sensors

The coil sensor is clipped to a tube on the outdoor coil at the point fed by the distribution tubes from the expansion device (short 3/8" dia. tube). The air sensor is located behind a cover on the control access side of the unit.

If the ambient sensor fails the defrost control will initiate a defrost every 34 minutes with the coil temperature below 35°F.

If the coil sensor fails the defrost control will not initiate a defrost.

Test Mode

The test mode is initiated by shorting the TEST pins. In this mode of operation, the enable temperature is ignored and all timers are sped up by a factor of 240. To initiate a manual defrost, short the TEST pins. Remove the short when the system switches to defrost mode. The defrost will terminate on time (14 minutes) or when the termination temperature has been achieved. Short TEST pins again to terminate the defrost immediately.

Trouble Shooting Demand Defrost

Set the indoor thermostat select switch to heat and thermostat lever to a call for heat.

Jumper the "test pins" to put the unit into defrost. If the unit goes into defrost and comes back out of defrost, the indication is that the control is working properly.

If the unit did not go into defrost using the test pins, check to ensure that 24V is being supplied to the control board. If 24V is present then replace the control.

High/Low Pressure Control Monitoring – Enhanced Defrost Control Only (6 Ton Unit Only)

Status of high and low pressure controls is monitored by the enhanced feature demand defrost control and the following actions are taken.

High Pressure Control – Provides active protection in both cooling and heating modes at all outdoor ambient temperatures. The high pressure control is an automatic reset type and opens at approximately 610 psig and closes at approximately 420 psig. The compressor and fan motor will stop when the high pressure control opens and will start again if the high side pressure drops to approximately 420 psig when the automatic reset high pressure control resets. If the high pressure control opens 3 times within a particular call for heating or cooling operation, the defrost control will lock out compressor and outdoor fan operation.

Low Pressure Control – Provides active protection in both heating and cooling modes at all outdoor ambient temperatures. The low pressure control is an automatic reset type and opens at approximately 15 psig and closes at approximately 40 psig. Operation is slightly different between cooling and heating modes.

Cooling Mode: The compressor and fan motor will stop when the low pressure control opens and will start again when the low side pressure rises to approximately 40 psig when the low pressure control automatically resets. If the low pressure switch opens 3 times within a particular call for cooling operation, the defrost control will lock out compressor and outdoor fan operation.

Heating Mode: The compressor and fan motor will stop when the low pressure control opens and will start again when the low side pressure rises to approximately 40 psig when the low pressure control automatically resets. If the low pressure switch trips 3 times within 120 minutes of operation during a particular call for heating operation, the defrost control will lock out compressor and outdoor fan operation. If the lock-out due to low pressure occurs at an outdoor ambient temperature below 5°F, the defrost control will automatically exit the lock-out mode when the outdoor ambient temperature rises to 5°F. This feature is necessary since the low pressure control could possibly have opened due to the outdoor ambient being very low rather than an actual system fault.

Exiting Lock-Out Mode: To exit the lock-out mode, remove 24 volts to the defrost control by removing power to the unit or by shorting the two defrost control test pins together.

Table 3: Enhanced Feature Defrost Control Diagnostic Codes (6 Ton Unit Only)

LED 1	LED 2	Control Board Status				
OFF	OFF	No Power				
ON	ON	Coil Sensor Failure				
OFF	ON	Ambient Sensor Failure				
FLASH	FLASH	Normal				
OFF	FLASH	Low Pressure Lockout (short test pins to reset)				
FLASH	OFF	High Pressure Lockout (short test pins to reset)				
ON	FLASH	Low Pressure Control Open				
FLASH	ON	High Pressure Control Open				
Alternate	Flashing	5 Minute Time Delay				

Replacement Parts

Contact your local distributor for a complete parts list.

Charge Information

Refer to the appropriate charge chart included in this manual

Troubleshooting

Refer to the troubleshooting chart included in this manual.

Wiring Diagrams

Refer to the appropriate wiring diagram included in this manual.

Unit Capacity and Physical Data

Table 4: MHS 003B [10.6 kW]

MHS Model Series	003BCK	003BCM	003BDK	003BDM	003BJK
Cooling Performance ¹		,			
Gross Cooling Capacity Btu [kW]	37,800 [11.08]	37,800 [11.08]	37,800 [11.08]	37,800 [11.08]	37,800 [11.08]
EER/IEER ²	11.5/13	11.5/13	11.5/13	11.5/13	11.5/13
Nominal CFM/ARI Rated CFM [L/s]	1200/1200 [566/566]	1200/1200 [566/566]	1200/1200 [566/566]	1200/1200 [566/566]	1200/1200 [566/566]
AHRI Net Cooling Capacity Btu [kW]	36,200 [10.61]	36,200 [10.61]	36,200 [10.61]	36,200 [10.61]	36,200 [10.61]
Net Sensible Capacity Btu [kW]	27,000 [7.91]	27,000 [7.91]	27,000 [7.91]	27,000 [7.91]	27,000 [7.91]
Net Latent Capacity Btu [kW]	9,200 [2.7]	9,200 [2.7]	9,200 [2.7]	9,200 [2.7]	9,200 [2.7]
Net System Power kW	3.1	3.1	3.1	3.1	3.1
Heating Performance (Heat Pumps)					
High Temp. Btuh [kW] Rating	34,400 [10.08]	34,400 [10.08]	34,400 [10.08]	34,400 [10.08]	34,400 [10.08]
System Power KW / COP	2.94/3.4	2.94/3.4	2.94/3.4	2.94/3.4	2.94/3.4
Low Temp. Btuh [kW] Rating	19,600 [5.74]	19,600 [5.74]	19,600 [5.74]	19,600 [5.74]	19,600 [5.74]
System Power KW / COP	2.72/2.1	2.72/2.1	2.72/2.1	2.72/2.1	2.72/2.1
HSPF (Btu/Watts-hr)	7.7	7.7	7.7	7.7	7.7
Compressor					
No./Type	1/Copeland Scroll				
Outdoor Sound Rating (dB) ³	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	16.89 [1.57]	16.89 [1.57]	16.89 [1.57]	16.89 [1.57]	16.89 [1.57]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]
Refrigerant Control	TX Valves				
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]
Refrigerant Control	TX Valves				
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP	1 at 1/3 HP				
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal				
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Direct/3	Belt/Variable	Direct/3	Belt/Variable	Direct/3
No. Motors	1	1	1	1	1
Motor HP	1/2	1/2	1/2	1/2	1/2
Motor RPM	1075	1725	1075	1725	1075
Motor Frame Size	48	56	48	56	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]
Refrigerant Charge Oz. [g]	116 [3289]	116 [3289]	116 [3289]	116 [3289]	116 [3289]
Weights	-				
Net Weight lbs. [kg]	517 [235]	517 [235]	517 [235]	517 [235]	517 [235]
Ship Weight lbs. [kg]	532 [241]	532 [241]	532 [241]	532 [241]	532 [241]
sp oigin ibo. [ng]	002 [E-1]	002 [E-1.]	302 [Z-7 1]	302 [Z-1]	002 [E-1]

^{1.} Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.

^{2.} EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.

^{3.} Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

Table 5: MHS 004B [13.9 kW]

MHS Model Series	004BCK	004BCM	004BDK	004BDM	004BJK
Cooling Performance ¹		<u> </u>	<u>'</u>		
Gross Cooling Capacity Btu [kW]	50,000 [14.65]	50,000 [14.65]	50,000 [14.65]	50,000 [14.65]	50,000 [14.65]
EER/IEER ²	11.2/13	11.2/13	11.2/13	11.2/13	11.2/13
Nominal CFM/ARI Rated CFM [L/s]	1600/1600 [755/755]	1600/1600 [755/755]	1600/1600 [755/755]	1600/1600 [755/755]	1600/1600 [755/755]
AHRI Net Cooling Capacity Btu [kW]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]
Net Sensible Capacity Btu [kW]	35,700 [10.46]	35,700 [10.46]	35,700 [10.46]	35,700 [10.46]	35,700 [10.46]
Net Latent Capacity Btu [kW]	11,800 [3.46]	11,800 [3.46]	11,800 [3.46]	11,800 [3.46]	11,800 [3.46]
Net System Power kW	4.22	4.22	4.22	4.22	4.22
Heating Performance (Heat Pumps)					
High Temp. Btuh [kW] Rating	49,000 [14.36]	49,000 [14.36]	49,000 [14.36]	49,000 [14.36]	49,000 [14.36]
System Power KW / COP	3.93/3.6	3.93/3.6	3.93/3.6	3.93/3.6	3.93/3.6
Low Temp. Btuh [kW] Rating	29,000 [8.5]	29,000 [8.5]	29,000 [8.5]	29,000 [8.5]	29,000 [8.5]
System Power KW / COP	3.63/2.3	3.63/2.3	3.63/2.3	3.63/2.3	3.63/2.3
HSPF (Btu/Watts-hr)	7.7	7.7	7.7	7.7	7.7
Compressor	1.1	1.1	1.1	1.1	1.1
No./Type	1/Copeland Scroll				
Outdoor Sound Rating (dB) ³	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves				
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves				
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP	1 at 1/3 HP				
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal				
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Direct/3	Belt/Variable	Direct/3	Belt/Variable	Direct/3
No. Motors	1	1	1	1	1
Motor HP	1/2	3/4	1/2	3/4	1/2
Motor RPM	1075	1725	1075	1725	1075
Motor Frame Size	48	56	48	56	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16
[mm x mm x mm]	[25×635×406]	[25×635×406]	[25×635×406]	[25×635×406]	[25×635×406]
Refrigerant Charge Oz. [g]	187 [5301]	187 [5301]	187 [5301]	187 [5301]	187 [5301]
Weights	505 [040]	505 (0.40)	505 (0.40)	505 [0.40]	505 (0.40)
Net Weight lbs. [kg]	535 [243]	535 [243]	535 [243]	535 [243]	535 [243]
Ship Weight lbs. [kg]	550 [249]	550 [249]	550 [249]	550 [249]	550 [249]

^{1.} Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.

^{2.} EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.

^{3.} Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

Table 6: MHS 005B [17.3 kW]

MHS Model Series	005BCM	005BDM	005BJK
Cooling Performance ¹			
Gross Cooling Capacity Btu [kW]	61,500 [18.02]	61,500 [18.02]	61,500 [18.02]
EER/IEER ²	11.5/13	11.5/13	11.5/13
Nominal CFM/ARI Rated CFM [L/s]	2000/2000 [944/944]	2000/2000 [944/944]	2000/2000 [944/944]
AHRI Net Cooling Capacity Btu [kW]	59,000 [17.29]	59,000 [17.29]	59,000 [17.29]
Net Sensible Capacity Btu [kW]	44,050 [12.91]	44,050 [12.91]	44,050 [12.91]
Net Latent Capacity Btu [kW]	14,950 [4.38]	14,950 [4.38]	14,950 [4.38]
Net System Power kW	5.04	5.04	5.04
Heating Performance (Heat Pumps)			
High Temp. Btuh [kW] Rating	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]
System Power KW / COP	4.78/3.6	4.78/3.6	4.78/3.6
Low Temp. Btuh [kW] Rating	35,800 [10.49]	35,800 [10.49]	35,800 [10.49]
System Power KW / COP	4.31/2.4	4.31/2.4	4.31/2.4
HSPF (Btu/Watts-hr)	7.7	7.7	7.7
,	1.1	1.7	1.1
Compressor No./Type	1/Copeland Scroll	1/Copeland Scroll	1/Scroll
Outdoor Sound Rating (dB) ³	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves	TX Valves	TX Valves
Indoor Coil - Fin Type	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves	TX Valves	TX Valves
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP			
Motor RPM	1 at 1/3 HP 1075	1 at 1/3 HP 1075	1 at 1/3 HP 1075
Indoor Fan - Type		FC Centrifugal	
, ,	FC Centrifugal	•	FC Centrifugal
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Belt/Variable	Direct/2	Direct/2
No. Motors	1	1	1
Motor HP	1	1	1
Motor RPM	1725	1725	1725
Motor Frame Size	56	56	56
Filter - Type	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]
Refrigerant Charge Oz. [g]	195 [5528]	195 [5528]	195 [5528]
Weights	[]	[]	[]
Net Weight lbs. [kg]	565 [256]	565 [256]	565 [256]
Ship Weight lbs. [kg]	580 [263]	580 [263]	580 [263]
Crisp Weight ibs. [r/g]	000 [200]	000 [200]	000 [200]

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.
- 3. Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

Table 7: MHS 006B [21.1 kW]

MHS Model Series	006BCL	006BCM	006BDL	006BDM	006BYL
Cooling Performance ¹		,			
Gross Cooling Capacity Btu [kW]	61,500 [18.02]	61,500 [18.02]	61,500 [18.02]	61,500 [18.02]	61,500 [18.02]
EER/IEER ²	11.5/13	11.5/13	11.5/13	11.5/13	11.5/13
Nominal CFM/ARI Rated CFM [L/s]	2000/2000 [944/944]	2000/2000 [944/944]	2000/2000 [944/944]	2000/2000 [944/944]	2000/2000 [944/944]
AHRI Net Cooling Capacity Btu [kW]	59,000 [17.29]	59,000 [17.29]	59,000 [17.29]		59,000 [17.29]
Net Sensible Capacity Btu [kW]	44,050 [12.91]	44,050 [12.91]	44,050 [12.91]	59,000 [17.29]	
Net Latent Capacity Btu [kW]	14,950 [4.38]	14,950 [4.38]	14,950 [4.38]	44,050 [12.91]	44,050 [12.91]
Net System Power kW	5.04	5.04	5.04	14,950 [4.38]	14,950 [4.38]
Heating Performance (Heat Pumps)	0.01	0.04	0.04	5.04	5.04
High Temp. Btuh [kW] Rating	60,000 [17.58]	60,000 [17.58]	60,000 [17.58]	00 000 117 501	00 000 147 501
System Power KW / COP	4.78/3.6	4.78/3.6	4.78/3.6	60,000 [17.58]	60,000 [17.58]
·				4.78/3.6	4.78/3.6
Low Temp. Btuh [kW] Rating	35,800 [10.49]	35,800 [10.49]	35,800 [10.49]	35,800 [10.49]	35,800 [10.49]
System Power KW / COP	4.31/2.4	4.31/2.4	4.31/2.4 7.7	4.31/2.4	4.31/2.4
HSPF (Btu/Watts-hr)	7.7	7.7	1.1	7.7	7.7
Compressor No./Type	1/Scroll	1/Copeland Scroll	1/Copeland Scroll	1/Copeland Scroll	1/Copeland Scroll
Outdoor Sound Rating (dB) ³	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]		
Face Area sq. ft. [sq. m]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]	0.375 [9.5]	0.375 [9.5]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	16.56 [1.54]	16.56 [1.54]
Refrigerant Control	TX Valves	TX Valves	TX Valves	2 / 22 [9]	2 / 22 [9]
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	TX Valves	TX Valves
••	Rifled	Rifled	Rifled	Louvered	Louvered
Tube Type				Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves				
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP	1 at 1/3 HP				
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal				
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1	1
Motor HP	3/4	3/4	3/4	3/4	3/4
Motor RPM	1725	1725	1725	1725	1725
Motor Frame Size	56	56	56	56	56
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in. [mm x mm x mm]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]	(2)1×25×16 [25×635×406]
Refrigerant Charge Oz. [g]	221 [6265]	221 [6265]	221 [6265]	221 [6265]	221 [6265]
Weights Net Weight lbs. [kg]	620 [281]	620 [281]	620 [281]	620 [281]	620 [281]
Ship Weight lbs. [kg]	635 [288]	635 [288]	635 [288]	635 [288]	635 [288]
. 0 101				000 [200]	المال المال المال

- 1. Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.
- 2. EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.
- $3. \ \ \text{Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270}.$

Table 8: MHS 003B - 005B [10.6 - 17.3 kW] High efficiency

MHS Model Series	H03BCM	H03BDM	H03BJK	H04BCK	H04BCM	H04BDK
Cooling Performance ¹						
Gross Cooling Capacity Btu [kW]	37,800 [11.08]	38,500 [11.28]	38,500 [11.28]	49,000 [14.36]	50,000 [14.65]	49,000 [14.36]
EER/IEER ²	12/14	12/14	12/14	11.6/14	11.6/14	11.6/14
Nominal CFM/ARI Rated CFM [L/s]	1200/1200 [566/566]	1200/1200 [566/566]	1200/1200 [566/566]	1600/1600 [755/755]	1600/1600 [755/755]	1600/1600 [755/755]
AHRI Net Cooling Capacity Btu [kW]		36,800 [10.78]	36,800 [10.78]	47,500 [13.92]	47,500 [13.92]	47,500 [13.92]
	36,800 [10.78]					
Net Sensible Capacity Btu [kW]	27,200 [7.97]	27,200 [7.97]	27,200 [7.97]	36,200 [10.61]	36,200 [10.61]	36,200 [10.61]
Net Latent Capacity Btu [kW]	9,600 [2.81]	9,600 [2.81]	9,600 [2.81]	11,300 [3.31]	11,300 [3.31]	11,300 [3.31]
Net System Power kW	2.99	2.99	2.99	4.09	4.09	4.09
Heating Performance (Heat Pumps)						
High Temp. Btuh [kW] Rating	33,600 [9.84]	33,600 [9.84]	33,600 [9.84]	49,000 [14.36]	49,000 [14.36]	49,000 [14.36]
System Power KW / COP	2.79/3.48	2.79/3.48	2.79/3.48	3.76/3.8	3.76/3.8	3.76/3.8
Low Temp. Btuh [kW] Rating	19,400 [5.68]	19,400 [5.68]	19,400 [5.68]	29,800 [8.73]	29,800 [8.73]	29,800 [8.73]
System Power KW / COP	2.56/2.22	2.56/2.22	2.56/2.22	3.48/2.4	3.48/2.4	3.48/2.4
HSPF (Btu/Watts-hr)	8	8	8	8	8	8
Compressor No./Type	1/Copeland Scroll					
Outdoor Sound Rating (dB) ³	83	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered	Louvered
••						
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	16.89 [1.57]	16.89 [1.57]	16.89 [1.57]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]
Rows / FPI [FPcm]	1 / 22 [9]	1 / 22 [9]	1 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves					
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	3 / 13 [5]	3 / 13 [5]	3 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves					
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP	1 at 1/3 HP	1 at 1/3 HP	1 at 1/3 HP		1 at 1/3 HP	
				1 at 1/3 HP		1 at 1/3 HP
Motor RPM	1075	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal					
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Belt/Variable	Belt/Variable	Belt/Variable	Direct/3	Belt/Variable	Direct/3
No. Motors	1	1	1	1	1	1
Motor HP	3/4	1/2	1/2	1/2	3/4	1/2
Motor RPM	1725	1725	1075	1075	1725	1075
Motor Frame Size	56	56	48	48	56	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16
[mm x mm x mm]	[25×635×406]	[25×635×406]	[25×635×406]	[25×635×406]	[25×635×406]	[25×635×406]
Refrigerant Charge Oz. [g]	116 [3289]	116 [3289]	116 [3289]	187 [5301]	187 5301]	187 5301]
Weights						
Net Weight lbs. [kg]	517 [235]	517 [235]	517 [235]	535 [243]	535 [243]	535 [243]

^{1.} Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.

^{2.} EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.

^{3.} Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

Table 8: MHS 003B - 005B [10.6 - 17.3 kW] High efficiency

MHS Model Series	H04BDM	H04BJK	H05BCM	H05BDM	H05BJK
Cooling Performance ¹					
Gross Cooling Capacity Btu [kW]	50,000 [14.65]	49,000 [14.36]	61,000 [17.87]	61,000 [17.87]	61,000 [17.87]
EER/IEER ²	11.6/14	11.6/14	11.7/14	11.7/14	11.7/14
Nominal CFM/ARI Rated CFM [L/s]	1600/1600 [755/755]	1600/1600 [755/755]	2000/1850 [944/873]	2000/1850 [944/873]	2000/1850 [944/873]
AHRI Net Cooling Capacity Btu [kW]	47,500 [13.92]	47,500 [13.92]	59,500 [17.43]	59,500 [17.43]	59,500 [17.43]
Net Sensible Capacity Btu [kW]	36,200 [10.61]	36,200 [10.61]	43,600 [12.77]	43,600 [12.77]	43,600 [12.77]
	· · · ·				
Net Latent Capacity Btu [kW]	11,300 [3.31]	11,300 [3.31]	15,900 [4.66]	15,900 [4.66]	15,900 [4.66]
Net System Power kW Heating Performance (Heat Pumps)	4.09	4.09	5.05	5.05	5.05
` ' '	40,000,144,261	40,000 [44,36]	E0 E00 [47 42]	E0 E00 [47 42]	E0 E00 [47 42]
High Temp. Btuh [kW] Rating	49,000 [14.36]	49,000 [14.36]	59,500 [17.43]	59,500 [17.43]	59,500 [17.43]
System Power KW / COP	3.76/3.8	3.76/3.8	4.8/3.6	4.8/3.6	4.8/3.6
Low Temp. Btuh [kW] Rating	29,800 [8.73]	29,800 [8.73]	36,400 [10.67]	36,400 [10.67]	36,400 [10.67]
System Power KW / COP	3.48/2.4	3.48/2.4	4.47/2.2	4.47/2.2	4.47/2.2
HSPF (Btu/Watts-hr)	8	8	8	8	8
Compressor No./Type	1/Copeland Scroll				
Outdoor Sound Rating (dB) ³	83	83	83	83	83
Outdoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
Tube Type	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Size in. [mm] OD	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]	16.56 [1.54]
Rows / FPI [FPcm]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]	2 / 22 [9]
Refrigerant Control	TX Valves				
Indoor Coil - Fin Type	Louvered	Louvered	Louvered	Louvered	Louvered
• •	Rifled	Rifled	Rifled	Rifled	Rifled
Tube Type Tube Size in. [mm]					
	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]	0.375 [9.5]
Face Area sq. ft. [sq. m]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]	5.16 [0.48]
Rows / FPI [FPcm]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]	4 / 13 [5]
Refrigerant Control	TX Valves				
Drain Connection No./Size in. [mm]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]	1/0.75 [19.5]
Outdoor Fan - Type	Propeller	Propeller	Propeller	Propeller	Propeller
No. Used/Diameter in. [mm]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]	1/24 [609.6]
Drive Type/No. Speeds	Direct/1	Direct/1	Direct/1	Direct/1	Direct/1
CFM [L/s]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]	4000 [1888]
No. Motors/HP	1 at 1/3 HP				
Motor RPM	1075	1075	1075	1075	1075
Indoor Fan - Type	FC Centrifugal				
No. Used/Diameter in. [mm]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]	1/10×10 [254×254]
Drive Type/No. Speeds	Belt/Variable	Direct/3	Belt/Variable	Belt/Variable	Belt/Variable
No. Motors	1	1	1	1	1
Motor HP	3/4	1/2	1	1	1
Motor RPM	1725	1075	1725	1725	1100
Motor Frame Size	56	48	56	56	48
Filter - Type	Disposable	Disposable	Disposable	Disposable	Disposable
Furnished	Yes	Yes	Yes	Yes	Yes
(NO.) Size Recommended in.	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16	(2)1×25×16
[mm x mm x mm] Refrigerant Charge Oz. [g]	[25×635×406] 187 5301]	[25×635×406] 187 5301]	[25×635×406] 195 5528]	[25×635×406] 195 5528]	[25×635×406] 195 5528]
Weights	107 3301]	107 3301]	190 0020]	190 0020]	190 0020]
•	E3E [343]	E2E [242]	E6E [2E6]	EGE [2EG]	EGE [256]
Net Weight lbs. [kg]	535 [243]	535 [243]	565 [256]	565 [256]	565 [256]
Ship Weight lbs. [kg]	550 [249]	550 [249]	580 [263]	580 [263]	580 [263]

^{1.} Cooling Performance is rated at 95° F ambient, 80° F entering dry bulb, 67° F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 210/240 or 360.

^{2.} EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.

^{3.} Outdoor Sound Rating shown is tested in accordance with AHRI Standard 270.

Table 9: Electrical Data MHS 003B - 004B [10.6 - 13.9kW]

		H03BCK	H03BCM	H03BDK	H03BDM	H03BJK	H04BCK	H04BCM	H04BDK	H04BDM	H04BJK
Ē	Unit Operating Voltage Range	187-253	187-253	414-506	414-506	187-253	187/253	187/253	414/506	414/506	187/253
atio	Volts	208/230	208/230	460	460	208/230	208/230	208/230	460	460	208/230
E	Minimum Circuit Capacity	17/17	19/19	11	10	27/27	21/21	23/23	10	11	28/28
Unit Information	Minimum Overcurrent Protection Device Size	20/20	25/25	15	15	35/35	25/25	30/30	15	15	35/35
ō	Maximum Overcurrent Protection Device Size	25/25	25/25	15	15	40/40	30/30	35/35	15	15	45/45
	Number	1	1	1	1	1	1	1	1	1	1
otor	Volts	208/230	208/230	460	460	208/230	208/230	208/230	460	460	208/230
Ž	Phase	3	3	3	3	1	3	3	3	3	1
SSO	RPM	3450	3450	3450	3450	3450	3450	3450	3450	3450	3450
pre	HP, Compressor 1	2.5	2.5	2.5	2.5	2.5	3	3	3	3	3
Compressor Motor	Amps (RLA), Comp 1	10.4/10.4	10.4/10.4	5.8	5.8	16.7/16.7	13.5/13.5	13.5/13.5	6	6	17.9/17.9
	Amps (LRA), Comp 1	88/88	88/88	38	38	79/79	88/88	88/88	44	44	112/112
_	Number	1	1	1	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230	208/230	460	460	208/230
sor	Phase	1	1	1	1	1	1	1	1	1	1
den	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Condensor Fan	Amps (RLA, each)	1.5/1.5	1.5/1.5	1	1	1.5/1.5	1.5/1.5	1.5/1.5	1	1	1.5/1.5
	Amps (LRA, each)	3/3	3/3	1.9	1.9	3/3	3/3	3/3	1.9	1.9	3/3
	Number	1	1	1	1	1	1	1	1	1	1
Fan	Volts	208/230	208/230	460	460	208/230	208/230	208/230	460	460	208/230
tor	Phase	1	3	1	3	1	1	3	1	3	1
Evaprator Fan	HP	1/2	3/4	1/2	3/4	1/2	1/2	3/4	1/2	3/4	1/2
Eva	Amps (RLA, each)	2.7/2.7	3.2/3.2	1.5	1.6	2.7/2.7	2.7/2.7	3.2/3.2	1.1	1.6	2.7/2.7
	Amps (LRA, each)	6.5/6.5	16.8/16.8	3.6	8.4	6.5/6.5	6.5/6.5	16.8/16.8	5.3	8.4	6.5/6.5

Table 10: Electrical Data MHS 005B - 006B [17.3 - 21.1 kW]

		H05BCM	H05BDM	H05BJK	H06BCL	H06BCM	H06BDL	H06BDM	H06BYL
'n	Unit Operating Voltage Range	187-253	414-506	187-253	187-253	187-253	414-506	414-506	518-633
atio	Volts	208/230	460	208/230	208/230	208/230	460	460	575
orm	Minimum Circuit Capacity	23/23	11	33/33	26/26	23/23	14	14	14
Unit Information	Minimum Overcurrent Protection Device Size	30/30	15	40/40	30/30	30/30	20	20	15
n	Maximum Overcurrent Protection Device Size	35/35	15	50/50	40/40	35/35	20	20	20
	Number	1	1	1	1	1	1	1	1
otor	Volts	208/230	460	208/230	208/230	208/230	460	460	575
r M	Phase	3	3	1	3	3	3	3	3
SSO	RPM	3450	3450	3450	3450	3450	3450	3450	3450
pre	HP, Compressor 1	3.5	3.5	3.5	7.5	7.5	7.5	7.5	7.5
Compressor Motor	Amps (RLA), Comp 1	13.7/13.7	6.2	21.8/21.8	21.2/21.2	21.2/21.2	10.9	10.9	8.3
	Amps (LRA), Comp 1	83.1/83.1	41	117/117	123/123	1123/123	62	62	50
	Number	1	1	1	1	1	1	1	1
Fan	Volts	208/230	460	208/230	208/230	208/230	460	460	575
sor	Phase	1	1	1	1	1	1	1	1
den	HP	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Condensor Fan	Amps (RLA, each)	1.5/1.5	1	1.5/1.5	1.5/1.5	2.2/2.2	1	1	0.8
	Amps (LRA, each)	3/3	1.9	3/3	3/3	4.7/4.7	2.4	2.4	1.6
	Number	1	1	1	1	1	1	1	1
Fan	Volts	208/230	460	208/230	208/230	208/230	460	460	575
Evaprator Fan	Phase	3	3	1	1	3	3	3	3
pra	HP	3/4	3/4	1/2	1/2	3/4	1	1	1.5
Eva	Amps (RLA, each)	3.2/3.2	1.6	2.7/2.7	2.7/2.7	3.2/3.2	1.9	1.9	2.3
	Amps (LRA, each)	16.8/16.8	8.4	6.5/6.5	6.5/6.5	16.8/16.8	12	12	13

Table 11: Gross System Performance—MHS 003B [10.6 kW], 3 Tons

				Enterin	g Indoor Air (@ 80°F [26.7°	C] dbE¹				
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]
		DR	0.16	0.12	0.06	0.16	0.12	0.06	0.16	0.12	0.06
		Total BTUH [kW]	46.6 [13.66]	44.6 [13.07]	42.5 [12.46]	43.2 [12.66]	41.4 [12.13]	39.5 [11.58]	40.2 [11.78]	38.4 [11.25]	36.7 [10.76]
	75 [23.9]	Sensible BTUH [kW]	28.3 [8.29]	25.3 [7.41]	22.4 [6.56]	33.4 [9.79]	29.9 [8.76]	26.4 [7.74]	38.6 [11.31]	34.6 [10.14]	30.6 [8.97]
		Power [kW]	2.1	2.1	2.0	2.2	2.1	2.1	2.2	2.1	2.1
		Total BTUH [kW]	45.4 [13.31]	43.5 [12.75]	41.5 [12.16]	42.1 [12.34]	40.3 [11.81]	38.4 [11.25]	39.0 [11.43]	37.3 [10.93]	35.6 [10.43]
	80 [26.7]	Sensible BTUH [kW]	27.7 [8.12]	24.8 [7.27]	21.9 [6.42]	32.8 [9.61]	29.4 [8.62]	25.9 [7.59]	38.0 [11.14]	34.0 [9.96]	30.1 [8.82]
		Power [kW]	2.3	2.2	2.2	2.3	2.3	2.2	2.3	2.3	2.2
		Total BTUH [kW]	44.3 [12.98]	42.3 [12.40]	40.4 [11.84]	40.9 [11.99]	39.2 [11.29]	37.4 [10.96]	37.9 [11.11]	36.2 [10.61]	34.6 [10.14]
	85 [29.4]	Sensible BTUH [kW]	27.1 [7.94]	24.2 [7.09]	21.4 [6.27]	32.2 [9.44]	28.8 [8.44]	25.4 [7.44]	37.4 [10.96]	33.5 [9.82]	29.6 [8.67]
		Power [kW]	2.4	2.3	2.3	2.4	2.4	2.3	2.5	2.4	2.4
		Total BTUH [kW]	43.1 [12.63]	41.2 [12.07]	39.3 [11.52]	39.8 [11.66]	38.0 [11.14]	36.3 [10.64]	36.7 [10.76]	35.1 [10.29]	33.5 [9.82]
Outdoor Dry Bulb Temperature °F [°C]	90 [32.2]	Sensible BTUH [kW]	26.4 [7.74]	23.7 [6.95]	20.9 [6.13]	31.5 [9.23]	28.3 [8.29]	25.0 [7.33]	36.7 [10.76]	32.9 [9.64]	29.1 [8.53]
ture		Power [kW]	2.5	2.5	2.4	2.6	2.5	2.5	2.6	2.5	2.5
mpera	0.5	Total BTUH [kW]	41.9 [12.28]	40.1 [11.75]	38.3 [11.22]	38.6 [11.31]	36.9 [10.81]	35.2 [10.32]	35.5 [10.40]	33.9 [9.94]	32.4 [9.50]
ulb Te	95 [35.0]	Sensible BTUH [kW]	25.8 [7.56]	23.1 [6.77]	20.4 [5.98]	30.9 [9.06]	27.7 [8.12]	24.5 [7.18]	35.5 [10.40]	32.4 [9.50]	28.6 [8.38]
_ 5		Power [kW]	2.7	2.6	2.6	2.7	2.7	2.6	2.7	2.7	2.6
loor D		Total BTUH [kW]	40.7 [11.93]	38.9 [11.40]	37.1 [10.87]	37.3 [10.93]	35.7 [10.46]	34.1 [9.99]	34.3 [10.05]	32.8 [9.61]	31.3 [9.17]
Outc	100 [37.8]	Sensible BTUH [kW]	25.2 [7.38]	22.5 [6.59]	19.9 [5.83]	30.3 [8.88]	27.1 [7.94]	23.9 [7.00]	34.3 [10.05]	31.8 [9.32]	28.1 [8.24]
		Power [kW]	2.8	2.8	2.7	2.9	2.8	2.7	2.9	2.8	2.8
	405	Total BTUH [kW]	39.4 [11.55]	37.7 [11.05]	36.0 [10.55]	36.1 [10.58]	34.5 [10.11]	32.9 [9.64]	33.0 [9.67]	31.6 [9.26]	30.1 [8.82]
	105 [40.6]	Sensible BTUH [kW]	24.5 [7.18]	21.9 [6.42]	19.4 [5.69]	29.6 [8.67]	26.5 [7.77]	23.4 [6.86]	33.0 [9.67]	31.2 [9.14]	27.5 [8.06]
		Power [kW]	2.9	2.9	2.8	3.0	2.9	2.9	3.0	2.9	2.9
		Total BTUH [kW]	38.1 [11.17]	36.5 [10.70]	34.8 [10.20]	34.8 [10.20]	33.3 [9.76]	31.8 [9.32]	31.7 [9.29]	30.3 [8.88]	29.0 [8.50]
	110 [43.3]	Sensible BTUH [kW]	23.7 [6.95]	21.3 [6.24]	18.8 [5.51]	28.9 [8.47]	25.8 [8.47]	22.8 [6.68]	31.7 [9.29]	30.3 [8.88]	26.9 [7.88]
		Power [kW]	3.1	3.0	3.0	3.1	3.1	3.0	3.1	3.1	3.0
		Total BTUH [kW]	36.8 [10.79]	35.2 [10.32]	33.6 [9.85]	33.5 [9.82]	32.0 [9.38]	30.6 [8.97]	30.4 [8.91]	29.1 [8.53]	27.7 [8.12]
	115 [46.1]	Sensible BTUH [kW]	23.0 [6.74]	20.6 [6.04]	18.2 [5.33]	28.1 [8.24]	25.1 [7.36]	22.2 [6.51]	30.4 [8.91]	29.1 [8.53]	26.3 [7.71]
		Power [kW]	3.2	3.2	3.1	3.3	3.2	3.1	3.3	3.2	3.1

NOTE: 1. When the entering air dry bulb is other than $80^{\circ}F$ [$27^{\circ}C$], adjust the sensible capacity from the table by adding [$1.10 \times CFM \times (1 - DR) \times (dbE - 80)$].

Table 12: Gross System Performance—MHS 004B [13.9 kW], 4 Tons

		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]
		DR	0.16	0.12	0.06	0.16	0.12	0.06	0.16	0.12	0.06
		Total BTUH [kW]	46.6 [13.66]	44.6 [13.07]	42.5 [12.46]	43.2 [12.66]	41.4 [12.13]	39.5 [11.58]	40.2 [11.78]	38.4 [11.25]	36.7 [10.76]
	75 [23.9]	Sensible BTUH [kW]	38.9 [11.40]	34.9 [10.23]	30.8 [9.03]	45.9 [13.25]	41.1 [12.05]	36.3 [10.64]	53.0 [15.53]	47.5 [13.92]	42.0 [12.31]
		Power [kW]	2.9	2.8	2.8	2.9	2.9	2.8	2.9	2.8	2.7
		Total BTUH [kW]	62.0 [18.17]	59.3 [17.38]	56.6 [16.59]	57.6 [16.88]	55.1 [16.15]	52.6 [15.42]	52.5 [15.39]	50.3 [14.74]	48.0 [14.07]
	80 [26.7]	Sensible BTUH [kW]	38.0 [11.14]	34.0 [9.96]	30.0 [8.79]	44.9 [13.16]	40.2 [11.78]	35.5 [10.40]	52.1 [15.27]	46.6 [13.66]	41.2 [12.07]
		Power [kW]	3.1	3.0	3.0	3.1	3.0	3.0	3.1	3.0	2.9
	85 [29.4]	Total BTUH [kW]	60.2 [17.64]	57.6 [16.88]	55.0 [16.12]	55.8 [16.35]	53.4 [15.65]	50.9 [14.92]	50.7 [14.86]	48.5 [14.21]	46.3 [13.57]
	90	Sensible BTUH [kW]	37.0 [10.84]	33.1 [9.70]	29.2 [8.56]	43.9 [12.87]	39.3 [11.52]	34.7 [10.17]	50.7 [10.17]	45.7 [13.39]	40.4 [11.84]
		Power [kW]	3.3	3.2	3.1	3.3	3.2	3.2	3.3	3.2	3.1
5		Total BTUH [kW]	58.4 [17.12]	55.9 [16.38]	53.3 [15.62]	54.0 [15.83]	51.7 [15.15]	49.3 [14.45]	48.9 [14.33]	46.8 [13.72]	44.7 [13.10]
Outdoor Dry Bulb Temperature °F [°C]	90 [32.2]	Sensible BTUH [kW]	36.0 [10.55]	32.2 [9.44]	28.4 [8.32]	42.9 [12.57]	38.4 [11.25]	34.0 [9.96]	48.9 [14.33]	44.8 [13.13]	39.6 [11.61]
ıtıre		Power [kW]	3.5	3.4	3.3	3.5	3.4	3.4	3.4	3.4	3.3
mpera		Total BTUH [kW]	56.6 [16.59]	54.2 [15.88]	51.77 [15.15]	52.2 [15.30]	50.0 [14.65]	47.7 [13.98]	47.2 [13.83]	45.1 [13.22]	43.1 [12.63]
ulb Te	95 [35.0]	Sensible BTUH [kW]	35.0 [10.26]	31.3 [9.17]	27.7 [8.12]	42.0 [12.31]	37.6 [11.02]	33.2 [9.73]	47.2 [13.83]	44.1 [12.92]	38.8 [11.37]
-Z		Power [kW]	3.7	3.6	3.5	3.7	3.6	3.5	3.6	3.6	3.5
door D	400	Total BTUH [kW]	54.9 [16.09]	52.6 [15.42]	50.2 [14.71]	50.5 [14.80]	48.4 [14.18]	46.2 [13.54]	45.5 [13.33]	43.5 [12.75]	41.5 [12.16]
Outc	100 [37.8]	Sensible BTUH [kW]	34.1 [9.99]	30.5 [8.94]	26.9 [7.88]	41.0 [12.02]	36.7 [10.76]	32.5 [9.52]	45.5 [13.33]	43.1 [12.63]	38.1 [11.17]
		Power [kW]	3.9	3.8	3.7	3.9	3.8	3.7	3.8	3.8	3.7
	405	Total BTUH [kW]	53.3 [15.62]	51.0 [14.95]	48.7 [14.27]	48.9 [14.33]	46.8 [13.72]	44.7 [13.10]	43.9 [12.87]	42.0 [12.31]	40.1 [11.75]
	105 [40.6]	Sensible BTUH [kW]	33.2 [9.73]	29.7 [8.70]	26.3 [7.71]	40.2 [11.78]	36.0 [10.55]	31.8 [9.32]	43.9 [12.87]	42.0 [12.31]	37.4 [10.96]
		Power [kW]	4.0	4.0	3.9	4.1	4.0	3.9	4.0	3.9	3.9
	440	Total BTUH [kW]	51.9 [15.21]	49.6 [14.54]	47.4 [13.89]	47.5 [13.92]	45.4 [13.31]	43.3 [12.69]	42.4 [12.43]	40.5 [11.87]	38.7 [11.34]
	110 [43.3]	Sensible BTUH [kW]	32.4 [9.50]	29.1 [8.53]	25.7 [7.53]	39.4 [11.55]	35.3 [10.35]	31.2 [9.14]	42.4 [12.43]	40.5 [11.87]	36.8 [10.79]
		Power [kW]	4.2	4.2	4.1	4.3	4.2	4.1	4.2	4.1	4.1
	445	Total BTUH [kW]	50.5 [14.80]	48.3 [14.16]	46.1 [13.51]	46.1 [13.51]	44.1 [12.92]	42.1 [12.34]	41.0 [12.02]	39.3 [11.52]	37.5 [10.99]
	115 [46.1]	Sensible BTUH [kW]	31.8 [9.32]	28.5 [8.35]	25.1 [7.36]	38.8 [11.37]	34.7 [10.17]	30.7 [9.00]	41.0 [12.02]	39.3 [11.52]	36.3 [10.64]
		Power [kW]	4.5	4.3	4.3	4.5	4.4	4.3	4.4	4.3	4.2

NOTE: 1. When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 × CFM × (1 – DR) × (dbE – 80)].

Table 13: Gross System Performance—MHS 005B [17.3 kW], 5 Tons

			1			@ 80°F [26.7°					
		wbE		71°F [21.7°C]	·		67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]
		DR	0.16	0.12	0.06	0.16	0.12	0.06	0.16	0.12	0.06
		Total BTUH [kW]	46.6 [13.66]	44.6 [13.07]	42.5 [12.46]	43.2 [12.66]	41.4 [12.13]	39.5 [11.58]	40.2 [11.78]	38.4 [11.25]	36.7 [10.76]
	75 [23.9]	Sensible BTUH [kW]	46.4 [13.60]	41.5 [12.16]	36.7 [10.76]	53.74 [15.74]	48.1 [14.10]	42.5 [12.46]	61.8 [18.11]	55.3 [16.21]	48.9 [14.33]
		Power [kW]	3.9	3.8	3.7	3.9	3.8	3.7	3.8	3.7	3.6
		Total BTUH [kW]	76.2 [22.33]	72.9 [21.36]	69.6 [20.40]	70.4 [20.63]	67.3 [19.72]	64.2 [18.82]	68.4 [20.05]	65.4 [19.17]	62.5 [18.32]
	80 [26.7]	Sensible BTUH [kW]	45.5 [13.33]	40.7 [11.93]	36.0 [10.55]	52.8 [15.47]	47.2 [13.83]	41.7 [12.22]	60.9 [17.85]	54.5 [15.97]	48.1 [14.10]
		Power [kW]	4.1	4.0	3.9	4.1	4.0	3.9	4.0	3.9	3.8
		Total BTUH [kW]	74.1 [21.72]	70.8 [20.75]	67.6 [19.81]	68.2 [19.99]	65.3 [19.14]	62.3 [18.26]	66.3 [19.43]	63.4 [18.58]	60.5 [17.73]
	85 [29.4]	Sensible BTUH [kW]	44.4 [13.01]	39.7 [11.63]	35.1 [10.29]	51.6 [15.12]	46.2 [13.54]	40.8 [11.96]	59.7 [17.50]	53.5 [15.68]	47.3 [13.86]
		Power [kW]	4.3	4.3	4.2	4.4	4.3	4.2	4.2	4.2	4.1
ច្ច		Total BTUH [kW]	71.9 [21.07]	68.7 [20.13]	65.6 [19.23]	66.0 [19.34]	63.1 [18.49]	60.3 [17.67]	64.1 [18.79]	61.3 [17.97]	58.5 [17.14]
) 	90 [32.2]	Sensible BTUH [kW]	43.1 [12.63]	38.6 [11.31]	34.1 [9.99]	50.4 [14.77]	45.1 [13.22]	39.9 [11.69]	58.5 [17.14]	52.4 [15.36]	46.3 [13.57]
Outdoor Dry Bulb Temperature °F [°C]		Power [kW]	4.6	4.5	4.4	46	4.5	4.4	4.5	4.4	4.3
		Total BTUH [kW]	69.6 [20.40]	66.6 [19.52]	63.6 [18.64]	63.8 [18.70]	61.0 [17.88]	58.2 [17.06]	61.8 [18.11]	59.1 [17.32]	56.4 [16.53]
	95 [35.0]	Sensible BTUH [kW]	41.8 [12.25]	37.5 [10.99]	33.1 [9.70]	49.1 [14.39]	44.0 [12.90]	38.9 [11.40]	57.2 [16.76]	51.2 [15.01]	45.3 [13.28]
_ 		Power [kW]	4.8	4.7	4.6	4.8	4.7	4.6	4.7	4.6	4.5
door D	400	Total BTUH [kW]	67.4 [19.75]	64.4 [18.87]	61.5 [18.02]	61.5 [18.02]	58.9 [17.26]	56.2 [16.47]	59.6 [17.47]	57.0 [16.71]	54.4 [15.94]
Onte	100 [37.8]	Sensible BTUH [kW]	40.6 [11.90]	36.3 [10.64]	32.1 [9.41]	47.8 [14.01]	42.8 [12.54]	37.8 [11.08]	55.9 [16.38]	50.1 [14.68]	44.3 [12.98]
		Power [kW]	5.1	5.0	4.9	5.1	5.0	4.9	5.0	4.9	4.8
	405	Total BTUH [kW]	65.2 [19.11]	62.4 [18.29]	59.5 [17.44]	59.3 [17.38]	56.8 [16.65]	54.2 [15.88]	57.4 [16.82]	54.9 [16.09]	52.4 [15.36]
	105 [40.6]	Sensible BTUH [kW]	39.3 [11.52]	35.2 [10.32]	31.1 [9.11]	46.6 [13.66]	41.8 [12.25]	36.9 [10.81]	54.7 [16.03]	49.0 [14.36]	43.3 [12.69]
		Power [kW]	5.3	5.2	5.1	5.3	5.2	5.1	5.2	5.1	5.0
	440	Total BTUH [kW]	63.1 [18.49]	60.4 [17.70]	57.6 [16.88]	57.3 [16.79]	54.8 [16.06]	52.3 [15.33]	55.3 [16.21]	52.9 [15.50]	50.5 [14.80]
	110 [43.3]	Sensible BTUH [kW]	38.1 [11.22]	34.3 [10.05]	30.3 [8.88]	45.5 [13.33]	40.8 [11.96]	36.0 [10.55]	53.6 [15.71]	48.0 [14.07]	42.4 [12.43]
		Power [kW]	5.6	5.4	5.3	5.6	5.5	5.3	5.5	5.3	5.2
	44-	Total BTUH [kW]	61.1 [17.91]	58.5 [17.14]	55.8 [16.35]	55.3 [16.21]	52.9 [15.50]	50.5 [14.80]	53.3 [15.62]	51.0 [14.95]	48.7 [14.27]
	115 [46.1]	Sensible BTUH [kW]	37.4 [10.96]	33.5 [9.82]	29.6 [8.67]	44.6 [13.07]	40.0 [11.72]	35.3 [10.35]	52.7 [15.44]	47.2 [13.83]	41.7 [12.22]
		Power [kW]	5.8	5.7	5.6	5.8	5.7	5.6	5.7	5.6	5.5

NOTE: 1. When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 × CFM × (1 – DR) × (dbE – 80)].

Table 14: Gross System Performance—MHS 006B [21.1 kW], 6 Tons

				Enterin	g Indoor Air (@ 80°F [26.7°	C] dbE1				
		wbE		71°F [21.7°C]			67°F [19.4°C]			63°F [17.2°C]	
	CI	FM [L/s]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]	1500 [707.9]	1200 [566.3]	900 [424.8]
		DR	0.16	0.12	0.06	0.16	0.12	0.06	0.16	0.12	0.06
		Total BTUH [kW]	46.6 [13.66]	44.6 [13.07]	42.5 [12.46]	43.2 [12.66]	41.4 [12.13]	39.5 [11.58]	40.2 [11.78]	38.4 [11.25]	36.7 [10.76]
	75 [23.9]	Sensible BTUH [kW]	51.8 [15.2]	44.9 [13.2]	36.4 [10.7]	67.5 [19.8]	59.5 [17.4]	49.5 [14.5]	76.1 [22.3]	67.6 [19.8]	56.9 [16.7]
		Power [kW]	4.1	4.0	3.9	4.0	3.9	3.8	3.9	3.9	3.8
		Total BTUH [kW]	89.8 [26.3]	86.9 [25.5]	83.1 [24.4]	85.9 [25.2]	83.2 [24.4]	79.5 [23.3]	80.1 [23.5]	77.5 [22.7]	74.1 [21.7]
	80 [26.7]	Sensible BTUH [kW]	51.9 [15.2]	45.0 [13.2]	36.5 [10.7]	67.5 [19.8]	59.6 [17.5]	49.6 [14.5]	76.1 [22.3]	67.6 [19.8]	56.9 [16.7]
	85 [29.4]	Power [kW]	4.4	4.3	4.2	4.3	4.2	4.2	4.3	4.2	4.1
		Total BTUH [kW]	87.8 [25.7]	85.1 [24.9]	81.3 [23.8]	83.9 [24.6]	81.3 [23.8]	77.7 [22.8]	78.1 [22.9]	75.7 [22.2]	72.4 [21.2]
	85 [29.4]	Sensible BTUH [kW]	51.4 [15.1]	44.7 [13.1]	36.3 [10.6]	67.0 [19.6]	59.2 [17.4]	49.3 [14.5]	75.5 [22.1]	67.3 [19.7]	56.8 [16.7]
		Power [kW]	4.7	4.7	4.6	4.7	4.6	4.5	4.6	4.5	4.4
~		Total BTUH [kW]	85.5 [25.1]	82.8 [24.3]	79.2 [23.2]	81.6 [23.9]	79.0 [23.2]	75.6 [22.2]	75.8 [22.2]	73.4 [21.5]	70.2 [20.6]
Outdoor Dry Bulb Temperature °F [°C]	90 [32.2]	Sensible BTUH [kW]	50.4 [14.8]	43.8 [12.8]	35.7 [10.5]	66.1 [19.4]	58.4 [17.1]	48.8 [14.3]	74.7 [21.9]	66.5 [19.5]	56.1 [16.5]
ture		Power [kW]	5.1	5.0	4.9	5.0	4.9	4.8	5.0	4.9	4.8
mpera		Total BTUH [kW]	82.7 [24.2]	80.1 [23.5]	76.6 [22.4]	78.8 [23.1]	76.4 [22.4]	73.0 [21.4]	73.0 [21.4]	70.7 [20.7]	67.6 [19.8]
ulb Te	95 [35.0]	Sensible BTUH [kW]	49.0 [14.4]	42.6 [12.5]	34.7 [10.2]	64.7 [19.0]	57.3 [16.8]	47.8 [14.0]	73.0 [21.4]	65.3 [19.1]	55.2 [16.2]
ry B		Power [kW]	5.5	5.4	5.3	5.4	5.3	5.2	5.3	5.3	5.1
loor D		Total BTUH [kW]	79.6 [23.3]	77.1 [22.6]	73.7 [21.6]	75.7 [22.2]	73.3 [21.5]	70.1 [20.5]	69.9 [20.5]	67.7 [19.8]	64.7 [19.0]
Outc	100 [37.8]	Sensible BTUH [kW]	47.2 [13.8]	41.1 [12.1]	33.4 [9.8]	63.0 [18.5]	55.7 [16.3]	46.6 [13.7]	69.9 [20.5]	63.7 [18.7]	53.8 [15.8]
		Power [kW]	5.9	5.8	5.7	5.8	5.7	5.6	5.7	5.7	5.5
	405	Total BTUH [kW]	76.0 [22.3]	73.6 [21.6]	70.3 [20.6]	72.1 [21.1]	69.8 [20.5]	66.7 [19.5]	66.3 [19.4]	64.2 [18.8]	61.4 [18.0]
	105 [40.6]	Sensible BTUH [kW]	44.9 [13.2]	39.0 [11.4]	31.7 [9.3]	60.6 [17.8]	53.6 [15.7]	44.8 [13.1]	66.3 [19.4]	61.7 [18.1]	52.2 [15.3]
		Power [kW]	6.3	6.2	6.1	6.2	6.1	6.0	6.2	6.1	5.9
		Total BTUH [kW]	76.0 [22.3]	73.6 [21.6]	70.3 [20.6]	72.1 [21.1]	69.8 [20.5]	66.7 [19.5]	66.3 [19.4]	64.2 [18.8]	61.4 [18.0]
	110 [43.3]	Sensible BTUH [kW]	44.9 [13.2]	39.0 [11.4]	31.7 [9.3]	60.6 [17.8]	53.6 [15.7]	44.8 [13.1]	66.3 [19.4]	61.7 [18.1]	52.2 [15.3]
		Power [kW]	6.8	6.6	6.5	6.7	6.6	6.4	6.6	6.5	6.4
		Total BTUH [kW]	67.5 [19.8]	65.4 [19.2]	62.5 [18.3]	63.6 [18.6]	61.6 [18.1]	58.9 [17.3]	57.8 [16.9]	56.0 [16.4]	53.5 [15.7]
	115 [46.1]	Sensible BTUH [kW]	38.8 [11.4]	33.7 [9.9]	27.3 [8.0]	54.5 [16.0]	48.3 [14.2]	40.4 [11.9]	57.8 [16.9]	56.0 [16.4]	47.8 [14.0]
		Power [kW]	7.2	7.1	7.0	7.2	7.0	6.9	7.1	7.0	6.8

NOTE: 1. When the entering air dry bulb is other than $80^{\circ}F$ [27°C], adjust the sensible capacity from the table by adding [1.10 × CFM × (1 – DR) × (dbE – 80)].

Table 15: System Heating Performance—MHS 003B [10.6 kW], 3 Tons

	IDB			60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CFM [L/s]		1440 [680]	1200 [566]	960 [453]	1440 [680]	1200 [566]	960 [453]	1440 [680]	1200 [566]	960 [453]
	0 [-17.8]	Total BTUH [kW]	11.0 [3.22]	10.8 [3.17]	10.7 [3.14]	9.8 [2.87]	9.7 [2.84]	9.6 [2.81]	8.4 [2.46]	8.3 [2.43]	8.2 [2.40]
Out door Dry Bulb Temperatur		Power	1.8	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.4
	5 [26.7]	Total BTUH [kW]	13.4 [3.93]	13.2 [3.87]	13.0 [3.81]	12.3 [3.60]	12.1 [3.55]	11.9 [3.49]	10.8 [3.17]	10.7 [3.14]	10.5 [3.08]
		Power	1.8	1.9	1.9	2.1	2.1	2.2	2.3	2.4	2.5
	10 [-12.2]	Total BTUH [kW]	15.9 [4.66]	15.6 [4.57]	15.4 [4.51]	14.7 [4.31]	14.5 [4.25]	14.3 [4.19]	13.3 [3.90]	13.1 [3.84]	12.9 [3.78]
		Power	1.9	1.9	2.0	2.1	2.2	2.2	2.4	2.4	2.5
u	15 [32.2]	Total BTUH [kW]	18.3 [5.36]	18.1 [5.30]	17.8 [5.22]	17.2 [5.04]	17.0 [4.98]	16.7 [4.89]	15.8 [4.63]	15.5 [4.54]	15.3 [4.48]
d		Power	1.9	2.0	2.0	2.2	2.2	2.3	2.4	2.5	2.5
o r	20 [-6.6]	Total BTUH [kW]	20.8 [6.10]	20.5 [6.01]	20.2 [5.92]	19.7 [5.77]	19.4 [5.69]	19.1 [5.60]	18.2 [5.33]	18.0 [5.28]	17.7 [5.19]
r	[32.2]	Power	1.9	2.0	2.0	2.2	2.3	2.3	2.4	2.5	2.6
B u I	20 [-6.6] 25 [37.8]	Total BTUH [kW]	23.3 [6.83]	23.0 [6.74]	22.6 [6.62]	22.2 [6.51]	21.9 [6.42]	21.6 [6.33]	20.7 [6.07]	20.4 [5.98]	20.2 [5.92]
		Power	2.0	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6
m p e	30 [-1.1]	Total BTUH [kW]	25.8 [7.56]	25.4 [7.44]	25.1 [7.36]	24.7 [7.24]	24.3 [7.12]	24.0 [7.03]	23.2 [6.80]	22.9 [6.71]	22.6 [6.62]
a		Power	2.0	2.1	2.1	2.3	2.3	2.4	2.5	2.6	2.7
u r e	35 [43.3]	Total BTUH [kW]	28.3 [8.29]	27.9 [8.18]	27.5 [8.06]	27.2 [7.97]	26.8 [7.85]	26.4 [7.74]	25.7 [7.53]	25.4 [7.44]	25.0 [7.33]
[°C]		Power	2.1	2.1	2.2	2.3	2.4	2.4	2.6	2.6	2.7
	40 [4.4]	Total BTUH [kW]	30.8 [9.03]	30.4 [8.91]	30.0 [8.79]	29.7 [8.70]	29.3 [8.59]	28.9 [8.47]	28.2 [8.26]	27.9 [8.18]	27.5 [8.06]
		Power	2.1	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.7
	45 [46.1]	Total BTUH [kW]	33.3 [9.76]	32.9 [9.64]	32.4 [9.50]	32.2 [9.44]	31.8 [9.32]	31.3 [9.17]	30.8 [9.03]	30.3 [8.88]	29.9 [8.76]
		Power	2.1	2.2	2.2	2.4	2.4	2.5	2.6	2.7	2.8
	50 [10]	Total BTUH [kW]	35.9 [10.52]	35.4 [10.37]	34.9 [10.23]	34.8 [10.20]	34.3 [10.05]	33.8 [9.91]	33.3 [9.76]	32.8 [9.61]	32.4 [9.50]
		Power	2.2	2.2	2.3	2.4	2.5	2.5	2.7	2.7	2.8

Table 16: System Heating Performance—MHS 004B [13.9 kW], 4 Tons

	IDB			60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CFM [L/s]		1680 [793]	1400 [661]	1120 [529]	1680 [793]	1400 [661]	1120 [529]	1680 [793]	1400 [661]	1120 [529]
	0 [-17.8]	Total BTUH [kW]	10.9 [3.19]	10.7 [3.14]	10.6 [3.11]	9.6 [2.81]	9.5 [2.78]	9.3 [2.73]	8.5 [2.49]	8.4 [2.46]	8.2 [2.40]
		Power	2.0	2.1	2.1	2.3	2.4	2.4	2.6	2.7	2.8
	5 [26.7]	Total BTUH [kW]	15.4 [4.51]	15.2 [4.45]	15.0 [4.40]	14.2 [4.16]	14.0 [4.10]	13.8 [4.04]	13.1 [3.84]	12.9 [3.78]	12.7 [3.72]
		Power	2.1	2.1	2.2	2.4	2.4	2.5	2.7	2.8	2.8
	10 [-12.2]	Total BTUH [kW]	19.4 [5.69]	19.1 [5.60]	18.8 [5.51]	18.1 [5.30]	17.8 [5.22]	17.6 [5.16]	17.0 [4.98]	16.7 [4.89]	16.5 [4.84]
		Power	2.1	2.2	2.2	2.4	2.5	2.5	2.7	2.8	2.9
O u t	15 [32.2]	Total BTUH [kW]	22.8 [6.68]	22.5 [6.59]	22.1 [6.48]	21.5 [6.30]	21.2 [6.21]	20.9 [6.13]	20.4 [5.98]	20.1 [5.89]	19.8 [5.80]
d o		Power	2.2	2.2	2.3	2.4	2.5	2.6	2.8	2.8	2.9
o r D	20 [-6.6]	Total BTUH [kW]	25.8 [7.56]	25.4 [7.44]	25.1 [7.36]	24.5 [7.18]	24.2 [7.09]	23.8 [6.98]	23.4 [6.86]	23.1 [6.77]	22.8 [6.68]
у	[-6.6]	Power	2.2	2.3	2.3	2.5	2.6	2.6	2.8	2.9	3.0
B u I b		Total BTUH [kW]	28.6 [8.38]	28.2 [8.26]	27.8 [8.15]	27.3 [8.00]	26.9 [7.88]	26.5 [7.77]	26.2 [7.68]	25.8 [7.56]	25.5 [7.47]
T e		Power	2.3	2.3	2.4	2.5	2.6	2.7	2.9	2.9	3.0
m p e r a	30 [-1.1]	Total BTUH [kW]	31.2 [9.14]	30.8 [9.03]	30.3 [8.88]	29.9 [8.76]	29.5 [8.65]	29.1 [8.53]	28.8 [8.44]	28.4 [8.32]	28.0 [8.21]
t u		Power	2.3	2.4	2.4	2.6	2.6	2.7	2.9	3.0	3.1
r e °F [°C]	35 [43.3]	Total BTUH [kW]	33.8 [9.91]	33.4 [9.79]	32.9 [9.64]	32.6 [9.55]	32.1 [9.41]	31.6 [9.26]	31.5 [9.23]	31.0 [9.09]	30.6 [8.97]
		Power	2.3	2.4	2.5	2.6	2.7	2.8	3.0	3.0	3.1
	40 [4.4]	Total BTUH [kW]	36.6 [10.73]	36.1 [10.58]	35.6 [10.43]	35.3 [10.35]	34.8 [10.20]	34.3 [10.05]	34.2 [10.02]	33.7 [9.88]	33.2 [9.73]
		Power	2.4	2.4	2.5	2.7	2.7	2.8	3.0	3.1	3.2
	45 [46.1]	Total BTUH [kW]	39.6 [11.61]	39.0 [11.43]	38.5 [11.28]	38.3 [11.22]	37.8 [11.08]	37.2 [10.90]	37.2 [10.90]	36.7 [10.76]	36.2 [10.61]
		Power	2.4	2.5	2.6	2.7	2.8	2.8	3.0	3.1	3.2
	50 [10]	Total BTUH [kW]	43.0 [12.60]	42.3 [12.40]	41.7 [12.22]	41.7 [12.22]	41.1 [12.05]	40.5 [11.87]	40.6 [11.90]	40.0 [11.72]	39.4 [11.55]
		Power	2.5	2.5	2.6	2.8	2.8	2.9	3.1	3.2	3.2

Table 17: System Heating Performance—MHS 005B [17.3 kW], 5 Tons

	IDB			60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CFM [L/s]		1920 [906]	1600 [755]	1280 [604]	1920 [906]	1600 [755]	1280 [604]	1920 [906]	1600 [755]	1280 [604]
	0 [-17.8]	Total BTUH [kW]	18.5 [5.42]	18.2 [5.33]	18.0 [5.28]	17.0 [4.98]	16.8 [4.92]	16.5 [4.84]	15.4 [4.51]	15.2 [4.45]	15.0 [4.40]
		Power	2.4	2.5	2.5	2.8	2.8	2.9	3.1	3.2	3.3
	5 [26.7]	Total BTUH [kW]	21.2 [6.21]	20.9 [6.13]	20.6 [6.04]	19.7 [5.77]	19.4 [5.69]	19.2 [5.63]	18.1 [5.30]	17.8 [5.22]	17.6 [5.16]
		Power	2.5	2.5	2.6	2.8	2.9	2.9	3.2	3.3	3.3
	10 [-12.2] 15 [32.2]	Total BTUH [kW]	24.0 [7.03]	23.7 [6.95]	23.4 [6.86]	22.6 [6.62]	22.2 [6.51]	21.9 [6.42]	20.9 [6.13]	20.6 [6.04]	20.3 [5.95]
		Power	2.5	2.6	2.6	2.8	2.9	3.0	3.2	3.3	3.4
O u t	[32.2]	Total BTUH [kW]	27.0 [7.91]	26.6 [7.80]	26.3 [7.71]	25.5 [7.47]	25.2 [7.39]	24.8 [7.27]	23.9 [7.00]	23.6 [6.92]	23.2 [6.80]
d o	20	Power	2.5	2.6	2.7	2.9	3.0	3.0	3.3	3.3	3.4
o r D r	20	Total BTUH [kW]	30.1 [8.82]	29.7 [8.70]	29.3 [8.59]	28.6 [8.38]	28.2 [8.26]	27.8 [8.15]	27.0 [7.91]	26.6 [7.80]	26.2 [7.68]
у		Power	2.6	2.7	2.7	2.9	3.0	3.1	3.3	3.4	3.5
B u I b		Total BTUH [kW]	33.3 [9.76]	32.8 [9.61]	32.4 [9.50]	31.8 [9.32]	31.4 [9.20]	30.9 [9.06]	30.2 [8.85]	29.8 [8.73]	29.3 [8.59]
T e		Power	2.6	2.7	2.8	3.0	3.1	3.1	3.4	3.4	3.5
m p e r a		Total BTUH [kW]	36.6 [10.73]	36.1 [10.58]	35.6 [10.43]	35.1 [10.29]	34.7 [10.17]	34.2 [10.02]	33.5 [9.82]	33.1 [9.70]	32.6 [9.55]
t u		Power	2.7	2.7	2.8	3.0	3.1	3.2	3.4	3.5	3.6
r e °F [°C]	35 [43.3]	Total BTUH [kW]	40.1 [11.75]	39.5 [11.58]	39.0 [11.43]	38.6 [11.31]	38.1 [11.17]	37.5 [10.99]	37.0 [10.84]	36.5 [10.70]	36.0 [10.55]
		Power	2.7	2.8	2.9	3.1	3.1	3.2	3.4	3.5	3.6
	40 [4.4]	Total BTUH [kW]	43.7 [12.81]	43.1 [12.63]	42.5 [12.46]	42.2 [12.37]	41.6 [12.19]	41.0 [12.02]	40.6 [11.90]	40.0 [11.72]	39.4 [11.55]
		Power	2.8	2.8	2.9	3.1	3.2	3.3	3.5	3.6	3.7
	45 [46.1]	Total BTUH [kW]	47.4 [13.89]	46.7 [13.69]	46.1 [13.51]	45.9 [13.45]	45.3 [13.28]	44.6 [13.07]	44.3 [12.98]	43.7 [12.81]	43.0 [12.60]
		Power	2.8	2.9	2.9	3.2	3.2	3.3	3.5	3.6	3.7
	50 [10]	Total BTUH [kW]	51.2 [15.01]	50.5 [14.80]	49.8 [14.59]	49.7 [14.57]	49.0 [14.36]	48.3 [14.16]	48.1 [14.10]	47.4 [13.89]	46.8 [13.72]
		Power	2.9	2.9	3.0	3.2	3.3	3.4	3.6	3.7	3.8

Table 18: System Heating Performance—MHS 006B [21.1 kW], 6 Tons

	IDB			60°F [15.5°C]			70°F [21.1°C]			80°F [26.7°C]	
	CFM [L/s]		2500 [1180]	2000 [944]	1500 [708]	2500 [1180]	2000 [944]	1500 [708]	2500 [1180]	2000 [944]	1500 [708]
	0 [-17.8]	Total BTUH [kW]	23.3 [6.83]	22.9 [6.71]	22.5 [6.59]	21.3 [6.24]	21.0 [6.15]	20.6 [6.04]	19.8 [5.80]	19.4 [5.69]	19.1 [5.60]
		Power	2.9	3.0	3.1	3.3	3.4	3.5	3.9	4.0	4.1
	5 [26.7]	Total BTUH [kW]	26.1 [7.65]	25.6 [7.50]	25.2 [7.39]	24.1 [7.06]	23.7 [6.95]	23.3 [6.83]	22.6 [6.62]	22.2 [6.51]	21.8 [6.39]
		Power	2.9	3.0	3.1	3.4	3.5	3.6	3.9	4.1	4.2
	10 [-12.2]	Total BTUH [kW]	30.0 [8.79]	29.4 [8.62]	28.9 [8.47]	28.0 [8.21]	27.5 [8.06]	27.0 [7.91]	26.4 [7.74]	26.0 [7.62]	25.5 [7.47]
		Power	3.0	3.1	3.2	3.5	3.6	3.7	4.0	4.2	4.3
O u t	15 [32.2]	Total BTUH [kW]	34.6 [10.14]	34.0 [9.96]	33.4 [9.79]	32.6 [9.55]	32.0 [9.38]	31.5 [9.23]	31.1 [9.11]	30.5 [8.94]	30.0 [8.79]
d o		Power	3.1	3.2	3.3	3.6	3.7	3.8	4.1	4.2	4.4
D r	20 [-6.6]	Total BTUH [kW]	39.7 [11.63]	39.0 [11.43]	38.3 [11.22]	37.7 [11.05]	37.0 [10.84]	36.4 [10.67]	36.2 [10.61]	35.5 [10.40]	34.9 [10.23]
у		Power	3.2	3.3	3.4	3.6	3.8	3.9	4.2	4.3	4.5
B u l b		Total BTUH [kW]	44.9 [13.16]	44.1 [12.92]	43.3 [12.69]	42.9 [12.57]	42.2 [12.37]	41.4 [12.13]	41.4 [12.13]	40.7 [11.93]	39.9 [11.69]
T e		Power	3.3	3.4	3.5	3.7	3.8	4.0	4.3	4.4	4.5
m p e r a	30 [-1.1]	Total BTUH [kW]	49.9 [14.62]	49.0 [14.36]	48.1 [14.10]	47.9 [14.04]	47.1 [13.80]	46.2 [13.54]	46.4 [13.60]	45.6 [13.36]	44.8 [13.13]
t u		Power	3.3	3.5	3.6	3.8	3.9	4.0	4.3	4.5	4.6
r e °F [°C]	35 [43.3]	Total BTUH [kW]	54.4 [15.94]	53.4 [15.65]	52.5 [15.39]	52.4 [15.36]	51.5 [15.09]	50.6 [14.83]	50.9 [14.92]	50.0 [14.65]	49.1 [14.39]
		Power	3.4	3.5	3.6	3.9	4.0	4.1	4.4	4.6	4.7
	40 [4.4]	Total BTUH [kW]	58.0 [17.00]	57.0 [16.71]	56.0 [16.41]	56.0 [16.41]	55.1 [16.15]	54.1 [15.86]	54.5 [15.97]	53.6 [15.71]	52.6 [15.42]
		Power	3.5	3.6	3.7	4.0	4.1	4.2	4.5	4.6	4.8
	45 [46.1]	Total BTUH [kW]	60.5 [17.73]	59.4 [17.41]	58.4 [17.12]	58.5 [17.14]	57.5 [16.85]	56.5 [16.56]	57.0 [16.71]	56.0 [16.41]	55.0 [16.12]
		Power	3.6	3.7	3.8	4.0	4.2	4.3	4.6	4.7	4.9
	50 [10]	Total BTUH [kW]	61.5 [18.02]	60.4 [17.70]	59.3 [17.38]	59.5 [17.44]	58.5 [17.14]	57.4 [16.82]	58.0 [17.00]	56.9 [16.68]	55.9 [16.38]
		Power	3.7	3.8	3.9	4.1	4.2	4.4	4.7	4.8	5.0

Table 19: Indoor Airflow Performance 003 Ton [10.6 kW]

													Capaci	ty 3 tor	ר Heat	Capacity 3 ton Heat Pump (13 SEER)	(13 SE	ER)											
i Ai													Volt	age 20	8-230,	Voltage 208-230, 460 - 3 Phase	3 Phas	(D)											
WO N												ш	ternal	Static F	Pressu	External Static Pressure - Inches of Water	hes of	Water											
[[/3]	0.1 [.02]	[.02]	0.2 [.05]	.05]	0.3 [.07]	.07]	0.4 [.10]	10]	0.5 [.	[.12]	0.6 [.	[.15]	0.7 [.17]	17]	0.8 [.3	[.20]	0.9 [.22]	22]	1.0 [.25]	[5]	1.1 [.27]	[7]	1.2 [.30]	<u>.</u> [0]	1.3 [.32]	2]	1.4 [.35]	2]	1.5 [.37]
	RPM	Watts	RPM	Watts	RPM	Watts	RPM	Watts	RPM	Watts	RPM	Watts	RPM V	Watts F	RPM	Watts	RPM	Watts F	RPM V	Watts	RPM W	Watts R	RPM W	Watts R	RPM W	Watts R	RPM W	Watts RI	RPM Watts
900 [475]	ı	ı	ı	ı	999	290	730	300	780	315	830	330	875	360	920	375	096	390	066	410	1040	445 1	1080	470 1	1140	510 1	1190 5	540 12	1235 590
1000 [472]	ı	I	625	275	089	295	750	310	805	325	850	345	895	375	935	390	970	410 1	1015	435 1	1065 4	465 1	1100 €	500	1160	530 1	1210 5	560 12	1255 610
1100 [519]	I	I	640	300	710	315	780	325	830	340	875	365	915	390	955	405	066	430 1	1040	450 1	1080	485 1	1115	540 1	1180	540 1	1230 6	600 12	1270 630
1200 [566]	I	I	029	315	735	330	800	345	850	365	890	385	935 '	410	975	430 1	1010	450 1	1060	475	1100	520 1	1145	560 1	1200	600 13	1250 6	630 12	1285 660
1300 [614]	625	315	200	330	770	350	830	370	875	400	915	415	922	440	066	450 1	1040	495 1	1085	530 1	1125	565 1	1165	590 1.	1220 6	645 13	1260 6	675 13	1305 710
1400 [661]	655	340	730	365	795	385	850	400	890	430	935	445	975	470 1	1010	200	1070	540	1110	575	1150 6	615 1	1195 (645 1	1230 6	685 1.	1280 7	725 13	1325 760
1500 [708]	989	380	755	390	825	415	870	435	915	450	922	480	066	505 1	1040	545 1	1090	590 1	1135	630 1	1180 6	1 099	1220 7	720 1	1255 7	740 13	1295 7	785 13	1350 820
1600 [755]	082	420	790	435	850	455	890	490	935	505	970	525 1	1005	550 1	1075	605	1110	640 1	1160	089	1200 7	730 1	1245 7	780 1.	1280 8	800	1325 8	840 13	1365 885
1700 [802]	755	465	825	475	875	505	915	535	922	250	985	570 1	1040	630 1	1100	685	1135	710 1	1185	750 1	1225 8	800	1265 8	830 1	1295 8	875 1	1350 8	910	
1800 [850]	062	200	850	530	890	220	935	929	975	009	1020	650 1	1080	1 069	1125	940	1165	770 1	1210	830 1	1245 8	870 1	1290 8	910 1	1310 8	930	1	1	
I DI	11 700	MOTE DOLD Inchiperate Manager Control Manager	40.0	M	7	000	, itoo	1																					

NOTE: Bold lines separate L, M and N drives respectively.

Drive Package				_							Σ			
Motor HP			1/2 (1/2 (3/4 - 575 V)	(5 V)						3/4			
Blower Sheave			6.9 Pi	6.9 Pitch Diameter	meter					6.4 Pi	6.4 Pitch Diameter	meter		
Motor Sheave		2.4 - 3.	.4 Adjus	2.4 - 3.4 Adjustable Pitch Diameter	itch Di	ameter			3.4 - 4	4 Adjus	stable F	3.4 - 4.4 Adjustable Pitch Diameter	meter	
Turns Open	0	-	2	3	4	2	9	0	_	2	3	4	5	9
RPM	935	875	830	780	730	089	625	935 875 830 780 730 680 625 1295 1230 1185 1135 1085 1000 955	1230	1185	1135	1085	1000	955
	00011100	40		704										

Factory sheave settings are shown in bold

4 ton

Table 20: Indoor Airflow Performance 004 Ton [13.9 kW]

													Sapacit	y 4 ton	Heat	Capacity 4 ton Heat Pump (13 SEER)	13 SEE	(3)											
j Ąi													Volts	1ge 208	3-230,	Voltage 208-230, 460 - 3 Phase	Phase												
WO N												Ĕ	ternal §	Static P	ressur	External Static Pressure - Inches of Water	nes of V	Vater											
[s/]	0.1	0.1 [.02]	0.2 [.05]	[:05]	0.3 [.07]	.07]	0.4 [.10]	10]	0.5 [.12]	12]	0.6 [.15]	2]	0.7 [.17]		0.8 [.20]	[0:	0.9 [.22]		1.0 [.25]		1.1 [.27]		1.2 [.30]	-	1.3 [.32]	1.4	1.4 [.35]	1.5	1.5 [.37]
	RPM	Watts	RPM	Watts	RPM	Watts	RPM	Watts	RPM \	Watts	RPM V	Watts R	RPM W	Watts R	RPM W	Watts R	RPM W	Watts RF	RPM W	Watts RF	RPM Watts	tts RPM	M Watts	ts RPM	/ Watts	s RPM	/ Watts	s RPM	Watts
1200 [566]	ı	ı	ı	1	745	340	810	375	865	390	006	400 8	945 4	420 1	1000	440 10	1040 4	460 10	1075 49	490 11	1115 540	0 1170	70 580	1215	5 620	1260	09 0	1300	685
1300 [614]	I	I	695	330	770	365	835	395	880	415	920	435 8	975 4	455 1	1010	470 10	1060 4	1 490	110 5;	530 11	1140 570	0 1190	009 06	1235	5 640	1270	0 685	1315	740
1400 [661]	ı	ı	725	350	795	395	855	420	895	435	945 '	455 8	995 4	470 1	1030	500 10	1070 5	520 11	1115 56	560 11	1160 600	0 1205	05 640	0 1250	0 685	1290	0 745	1335	810
1500 [708]	069	360	750	390	820	425	875	450	920	465	026	480 1	1010	500 10	1055	560 1	1100 5	580 11	1140 63	630 11	1180 660	0 1230	30 700	1270	0 760	1315	5 815	1350	865
1600 [755]	720	390	780	430	850	460	895	480	945	200	066	530 1	1035 5	565 10	1075	590 1	1115 6	635 11	1160 68	680 12	1205 725	5 1250	90 770	1290	0 830	1335	2 890	1365	935
1700 [802]	750	430	810	465	870	485	920	200	970	530	1015	570 1	1055 6	600 10	1090	645 1	1140 6	695 11	1180 73	735 12	1225 790	0 1270	70 845	1315	5 910	1350	096 C	I	I
1800 [850]	780	475	840	515	895	540	945	555	066	009	1035 (625 1	1080	1 099	1115 7	710 1	1155 7	740 12	1205 80	800 12	1250 860	0 1295	95 930	1340	0 995	1365	5 1030	1	I
1900 [897]	820	520	870	260	925	280	920	009	1015	640	1060	1 069	1115 7	750 1	1145 7	790 1	1185 8	835 12	1225 88	880 12	1275 900	0 1315	1010	0 1355	5 1060	- 0	I	I	I
2000 [944]	850	585	006	610	950	630	1000	999	1045	715 1	1090	760 1	1130 8	810 1	1170 8	865 13	1205 9	900 12	1255 96	965 13	1300 1050	1340	1100	0 1365	5 1140	-	-	I	I
NOTE	וויוסם	Vlavitaeases sevista M has M Latines seeil blog - HON	0,000	M	I V	000	, itana	, Ilv,																					

NOTE: Bold lines separate L, M and N drives respectively.

Σ	3/4	6.4 Pitch Diameter	3.4 - 4.4 Adjustable Pitch Diameter	2 3 4 5 6	850 800 750 695 1270 1225 1170 1115 1065 1015 965	
			3.4 - ,	_	1225	
				0	1270	
				9	695	
			meter	5	750	
	5 V)	meter	itch Dia	4	800	
_	1/2 (3/4 - 575 V)	6.9 Pitch Diameter	2.8 - 3.8 Adjustable Pitch Diameter	3	850	7
	1/2 (:	6.9 Pi	8 Adjus	2	895	
			2.8 - 3	-	990 945	40
				0	066	0001110
Drive Package	Motor HP	Blower Sheave	Motor Sheave	Turns Open	RPM	

actory sheave settings are shown in bold

Table 21: Indoor Airflow Performance 005 Ton [17.3 kW]

			.37]	Watts	745	805	880	940	1020	1100	I	I	I	I	1
			1.5 [.37]	RPM Watts	1340	1355	1365	1375	1390	1450	I	ı	I	ı	1
			.35]	Watts	705	775	840	902	985	1050	1120	1200	I	I	ı
			1.4 [.35]	RPM	1300	1320	1340	1355	1365	1375	1385	1400	I	I	ı
			.32]	RPM Watts	099	735	790	855	930	1000	1075	1150	1225	1350	1
			1.3 [.32]	RPM	1235	1255	1275	1300	1320	1335	1350	1370	1385	1405	1
			:30]	Watts	645	700	750	815	880	096	1035	1100	1180	1260	1375
			1.2 [.30]	RPM	1195	1215	1225	1245	1260	1290	1320	1335	1360	1375	1400
			1.1 [.27]	Watts	615	675	730	790	850	915	980	1060	1140	1230	1315
			<u></u>	RPM	1150	1165	1180	1200	1225	1245	1260	1290	1320	1350	1370
			1.0 [.25]	RPM Watts	595	650	705	755	810	890	950	1020	1100	1175	1255
			1.0		1105	1135	1145	1160	1175	1200	1225	1250	1275	1310	1340
EER)	se	External Static Pressure - Inches of Water	0.9 [.22]	RPM Watts	570	615	089	725	785	850	910	995	1055	1125	1210
p (13 S	460 - 3 Phase	ches o	0.9		1065	1080	1105	1120	1140	1160	1180	1210	1240	1265	1300
Capacity 5 ton Heat Pump (13 SEER)	0,460	sure - Ir	0.8 [.20]	RPM Watts	540	295	640	089	760	810	875	950	1020	1095	1175
ton He	Voltage 208-230,	c Press	0.8		1030	1045	1060	1075	1100	1120	1145	1170	1195	1225	1260
acity 5 1	oltage 2	al Stati	0.7 [.17]	RPM Watts	490	540	009	640	710	775	830	910	980	1050	1140
Capa	×	Externa	0.7		970	995	1015	1035	1055	1070	1105	1130	1155	1180	1225
			0.6 [.15]	Watts	460	200	260	909	099	720	790	870	940	1025	1085
			9.0	RPM	930	945	962	066	1010	1035	1055	1090	1120	1150	1175
			0.5 [.12]	RPM Watts	425	440	510	220	675	675	730	820	880	965	1055
			0.5		875	895	915	940	962	995	1015	1040	1060	1100	1145
			0.4 [.10]	RPM Watts	385	415	470	530	540	640	700	760	830	910	1005
			0.4		815	840	870	895	915	945	970	1005	1030	1065	1100
			0.3 [.07]	RPM Watts	370	405	425	490	540	290	655	705	780	830	925
			0.3		780	795	805	840	870	895	930	922	995	1015	1040
			0.2 [.05]	RPM Watts	1	I	390	450	470	530	605	655	735	795	880
			0.2		1	I	780	795	815	820	880	915	945	975	1015
			0.1 [.02]	RPM Watts	1	I	I	I	455	485	250	615	089	755	825
	L			RPM	1	I	I	I	780	800	830	860	895	940	970
	Air Flow	CFM	[F/s]		1400 [661]	1500 [708]	1600 [755]	1700 [802]	1800 [850]	1900 [897]	2000 [944]	2100 [991]	2200 [1038]	2300 [1085]	2400 [1133]

NOTE: Bold lines separate L and M drives respectively.

Drive Package				_							Σ			
Motor HP				3/4							-			
Blower Sheave			6.4 Pi	6.4 Pitch Diameter	meter					6.4 Pi	6.4 Pitch Diameter	neter		
Motor Sheave		2.8 - 3.	.8 Adjus	stable F	2.8 - 3.8 Adjustable Pitch Diameter	ameter			3.4 - 4	4 Adjus	3.4 - 4.4 Adjustable Pitch Diameter	itch Dia	ameter	
Turns Open	0	-	7	က	4	5	9	0	-	2	က	4	5	9
RPM	1095	1040	995	940	890	835	780	1095 1040 995 940 890 835 780 1405 1360 1305 1250 1195 1145 1095	1360	1305	1250	1195	1145	1095
Factory sheave settings are shown in hold	soffings	are ch	n uwo	Polo										

Factory sheave settings are shown in bold

Table 22: Indoor Airflow Performance 006 Ton [21.1 [kW] Sideflow

												OII [TVAA	,
			1.5 [.37]	RPM Watts	1188	1277	1377	1486	1605	1733	1872	2020	ı	I	I
			1.5 [RPM	1287	1300	1315	1331	1348	1366	1386	1407	1	ı	1
			.35]	RPM Watts	1130	1216	1312	1418	1533	1659	1794	1939	1	I	1
			1.4 [.35]		1252	1266	1282	1299	1317	1336	1357	1379	1	I	ı
			1.3 [.32]	RPM Watts	1074	1157	1250	1352	1465	1587	1719	1861	2012	I	1
			1.3		1217	1232	1249	1267	1266	1306	1328	1351	1375	I	1
			1.2 [.30]	RPM Watts	1021	1101	1190	1289	1398	1517	1646	1784	1933	I	1
			1.2		1181	1198	1215	1234	1254	1276	1298	1322	1347	I	1
			1.1 [.27]	RPM Watts	971	1047	1133	1229	1334	1450	1575	1711	1856	2011	1
			1.1		1146	1163	1181	1201	1222	1245	1268	1293	1319	1346	ı
			1.0 [.25]	RPM Watts	923	962	1078	1171	1273	1385	1508	1639	1781	1933	ı
		_	1.0		1110	1128	1147	1168	1190	1213	1238	1264	1291	1319	ı
EER)	hase	f Wate	0.9 [.22]	RPM Watts	877	947	1026	1115	1214	1323	1442	1571	1709	1858	2016
(13 S	5 - 3 P	ches o	0.9		1073	1092	1113	1135	1158	1182	1207	1234	1262	1291	1322
Capacity 6 ton Heat Pump (13 SEER)	Voltage 208-230, 460, 575 - 3 Phase	External Static Pressure - Inches of Water	[.20]	RPM Watts	834	006	926	1062	1158	1264	1379	1505	1640	1785	1940
on Hea	-230, 4	Press	0.8 [.20]	RPM	1036	1057	1078	1101	1125	1150	1176	1204	1233	1263	1295
city 6 to	ge 208	ıl Static	.17]	RPM Watts	793	856	929	1012	1104	1207	1319	1441	1573	1715	1866
Capa	Volta	Externa	0.7 [.17]		666	1020	1043	1066	1091	1118	1145	1174	1204	1235	1267
			[.15]	RPM Watts	755	815	885	964	1053	1152	1261	1380	1508	1647	1795
			0.6 [.15]		962	984	1007	1032	1058	1085	1113	1143	1174	1206	1240
			.5 [.12]	RPM Watts	720	922	842	919	1004	1100	1206	1321	1446	1177 1582	11 1726
			0.5	RPM	924	947	971	266	1024	1052	1081	1112	1144		1211
			[.10]	RPM Watts	687	740	803	876	928	1051	1153	1265	1387	1519	1660
			0.4 [.10]		988	910	935	962	066	1019	1049	1081	1114	1148	1183
			[.07]	RPM Watts	929	902	992	835	914	1004	1103	1211	1330	1458	1597
			0.3 [.07]		847	872	899	926	955	985	1016	1049	1083	1118	1154
			[:05]	RPM Watts	I	I	731	797	873	959	1055	1160	1276	1401	1536
			0.2 [.05]		ı	I	862	890	920	951	983	1017	1052	1088	1125
			.02]	RPM Watts	1	I	I	762	834	917	1009	1112	1224	1345	1477
			0.1 [.02]	RPM	1	I	I	854	885	917	950	985	1020	1057	1096
	Air Flow	CFM	[s/]		1900 [897]	2000 [944]	2100 [991]	2200 [1038]	2300 [1085]	2400 [1133]	2500 [1180]	2600 [1227]	2700 [1274]	2800 [1321]	2900 [1368]

NOTE: Bold lines separate L and M drives respectively.

Drive Package				_							Σ			
Motor HP			1.5	1.5 [1118.5]	2]					£	1.5 [1118.5]	2]		
Blower Sheave				AK66							AK59			
Motor Sheave			_	1VP-44							1VP-50			
Turns Open	0	-	7	က	4	5	9	0	-	2	က	4	2	9
RPM	1103	1052	1103 1052 1002 956	926	006	849	_	1381	1381 1326 1272 1220 1163 1108	1272	1220	1163	1108	-

Component Airflow Resistance - 6 ton [21.1 kW]

		•									
CFM II (61	1900 [897]	2000 [944]	2100 [991]	2200 [1038]	2300 [1085]	2400 [1133]	2300 2400 2500 2600 2700 2800 11085] [1133] [1180] [1227] [1274] [1321]	2600 [1227]	2700 [1274]	2800 [1321]	2900 [1368]
[⊏/3]				Resist	ance - I	nches c	Resistance - Inches of Water [kPa]	[kPa]			
Wet Coil	0.05	0.06 [.01]	0.07	008	0.08	0.09	0.10 [.02]	0.10	0.11	0.11	0.12 [.03]
Downflow	0.03	0.04 [.01]	0.05	0.06	0.07	0.08	0.08	0.09	0.09	0.10	0.10
Downflow Economizer RA Damper Open	0.08	0.08 [.02]	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.12 [.03]	0.12 [.03]
Horizontal Economizer RA Damper Open	0.08	0.08	0.09	0.09	0.10	0.10	0.10	0.11	0.11	0.12 [.03]	0.12
Concentric Grille: RXRN-FA65 or RXRN-FA75 & Transition B XMC-COA	0.07	0.08	0.09	0.10	0.12	0.13	0.15	0.17	0.19	0.21	0.23

6 ton

Notes: 1. Factory sheave settings are shown in bold.

2. Do not set motor sheave below minimum or above maximum turns open.

3. Re-adjustment of sheave required to achieve rated airflow at ARI minimum External Static Pressure.

4. Drive data shown is for horizontal airflow, with dry coil. Add component resistance (below) to duct resistance to determine total External Static Pressure.

MCA and **MCOP**

Table 23: Unit MCA and MCOP Data

		Single	Phase			Three	Phase		
МПС	Model				Vol	tage			
WINS	Wiodei	208	3/230	208	/230	4	160	5	75
		Low*	High	Low*	High	Low*	High	Low*	High
003B	MCA	27.0	N/A	19.0	N/A	11.0	N/A	N/A	N/A
003B	MCOP	40.0	N/A	25.0	N/A	15.0	N/A	N/A	N/A
004B	MCA	33.0	N/A	23.0	N/A	11.0	N/A	N/A	N/A
004B	MCOP	50.0	N/A	35.0	N/A	15.0	N/A	N/A	N/A
005B	MCA	43.0	N/A	N/A	26.0	N/A	13.0	N/A	10.0
005B	МСОР	60.0	N/A	N/A	40.0	N/A	20.0	N/A	15.0
0000	MCA	N/A	N/A	37.0	37.0	18.0	18.0	12.0	12.0
006B	MCOP	N/A	N/A	50.0	50.0	25.0	25.0	15.0	15.0
0070	MCA	N/A	N/A	42.0	48.0	21.0	24.0	16.0	20.0
007B	МСОР	N/A	N/A	60.0	60.0	30.0	30.0	20.0	25.0
0400	MCA	N/A	N/A	49.0	54.0	23.0	26.0	19.0	24.0
010B	МСОР	N/A	N/A	60.0	60.0	25.0	30.0	20.0	30.0
0450	MCA								
015B	MCOP								

NOTE: *Low static option is a direct-drive motor for Models 003B and 004B

Compressor and Condenser Motor

Table 24: Compressor and Condenser Motor Data — 208/230 Volt, Single Phase

B.V.			Electrical Data	a (208/230 V)*		
Data	MHS 003J	MHS 004J	MHS 005J	MHS 003B	MHS 004B	MHS 005B
Compressor Motor						
Number			1			
Phase			1			
RPM			34	50		
HP, Compressor 1	3	4	5	3	4	5
Amps (RLA), Comp 1	16.7	21.8	26.3	16.7	21.8	26.3
Amps (LRA), Comp 1	79.0	117.0	134.0	79.0	117.0	134.0
HP, Compressor 2			N/	'A		
Amps (RLA), Comp 2			N	'A		
Amps (LRA), Comp 2			N	/A		
Condenser Motor						
Number			1			
Phase			1			
HP			1/	3		
Amps (FLA each)	1	.5	2.2	1	.5	2.2
Amps (LRA each)	3	.0	4.9	3	3.0	4.9

Table 25: Compressor and Condenser Motor Data — 460 Volt, Three Phase

Dete			Elect	rical Data (208/23	80 V)*		
Data	MHS 003B	MHS 004B	MHS 005B	MHS 006B	MHS 007B	MHS 010B	MHS 015B
Compressor Motor							
Number			1			2	
Phase			;	3			
RPM			34	50			
HP, Compressor 1	3	4	5	5	6	5	
Amps (RLA), Comp 1	5.8	6.2	7.5	10.7	11.2	8.6	
Amps (LRA), Comp 1	38	41	52	75	75	52	
HP, Compressor 2			N/A			5	
Amps (RLA), Comp 2			N/A			8.6	
Amps (LRA), Comp 2			N/A			52	
Condenser Motor							
Number		1			2		
Phase							
HP			1.	/3			
Amps (FLA each)			0	7			
Amps (LRA each)			2	4			

Table 26: Compressor and Condenser Motor Data — 575 Volt, Three Phase

Dete		Electrical Da	ta (208/230 V)*	
Data	MHS 006B	MHS 007B	MHS 0010B	MHS 0015B
Compressor Motor				
Number		1	2	
Phase		3		
RPM		3450		
HP, Compressor 1	5	6	5	
Amps (RLA), Comp 1	8.5	7.9	6.4	
Amps (LRA), Comp 1	54	54	38.9	
HP, Compressor 2	N	I/A	5	
Amps (RLA), Comp 2	N	I/A	6.4	
Amps (LRA), Comp 2	N	38.9		
Condenser Motor				
Number		2		
Phase		1		
HP		1/3		
Amps (FLA each)		0.5		
Amps (LRA each)		1.5		

Table 27: Auxiliary Heater Kits Characteristics and Application: 208/230 V - 3 Phase

Unit Model Number MHS	Heater Kit Model No. RXJJ-	Heater kW @ 208/230 V/3 Phase	Heater Kit FLA	Unit Minimum Circuit Ampacity	Maximum Fuse or Circuit Breaker Size*
	None	_	_	19/19	25/25
OOOD Discost Otastic Deliver	A10C	7.2/9.6	20.0/23.1	30/34	30/35
003B - Direct Static Drives	A15C	10.8/14.4	30.1/34.7	43/49	45/50
	A20C	14.4/19.2	40.1/46.2	56/63	60/70
	None	_	_	23/23	35/35
004B - Direct Static Drives	A10C	7.2/9.6	20.0/23.1	30/34	35/35
004B - Direct Static Drives	A15C	10.8/14.4	30.1/34.7	43/49	45/50
	A20C	14.4/19.2	40.1/46.2	56/63	60/70
	None	_	_	26/26	40/40
OOFD Llimb Ctatio Drives	A10C	7.2/9.6	20.0/23.1	30/34	40/40
005B - High Static Drives	A15C	10.8/14.4	30.1/34.7	43/49	45/50
	A20C	14.4/19.2	40.1/46.2	55/63	60/70
	None	_	_	37/37	50/50
	CC10C	7.2/9.6	20.0/23.1	37/37	50/50
006B - Low and High Static Drives	CC15C	10.8/14.4	30.0/34.6	45/51	50/60
Cidio Dilvos	CC20C	14.4/19.2	40.0/46.2	57/65	60/70
	CC30C	21.6/28.8	60.0/69.3	82/94	90/100

NOTE: *Circuit breaker must be HACR type for United States

Table 28: Auxiliary Heater Kits Characteristics and Application: 480 V - 3 Phase

Unit Model Number MHS	Heater Kit Model No. RXJJ-	Heater kW @ 208/230 V/3 Phase	Heater Kit FLA	Unit Minimum Circuit Ampacity	Maximum Fuse or Circuit Breaker Size*
003B - Direct Static Drives	None	_	_	11	15
	A10C	9.6	11.6	17	20
	A15C	14.4	17.3	25	25
	A20C	19.2	23.1	32	35
004B - Direct Static Drives	None	_	_	11	15
	A10C	9.6	11.6	17	20
	A15C	14.4	17.3	25	25
	A20C	19.2	23.1	32	35
005B - High Static Drives	None	_	_	13	20
	A10C	9.6	11.6	17	20
	A15C	14.4	17.3	24	25
	A20C	19.2	23.1	32	35
006B - Low and High Static Drives	None	_	_	18	25
	CC10C	9.6	11.5	18	25
	CC15C	14.4	17.3	26	30
	CC20C	19.2	23.1	33	35
	CC30C	28.8	34.6	47	50

NOTE: *Circuit breaker must be HACR type for United States

Table 29: Auxiliary Heater Kits Characteristics and Application: 600 V - 3 Phase

Unit Model Number MHS	Heater Kit Model No. RXJJ-	Heater kW @ 208/230 V/3 Phase	Heater Kit FLA	Unit Minimum Circuit Ampacity	Maximum Fuse or Circuit Breaker Size*
006B - Low and High Static Drives	None	_	_	14	20
	CC10C		9.2	14	20
	CC15C		13.9	20	20
	CC20C		18.5	26	30
	CC30C		27.7	37	40

NOTE: *Circuit breaker must be HACR type for United States

Figure 18: Direct-Drive Heat Pump 208/230V, Single Phase

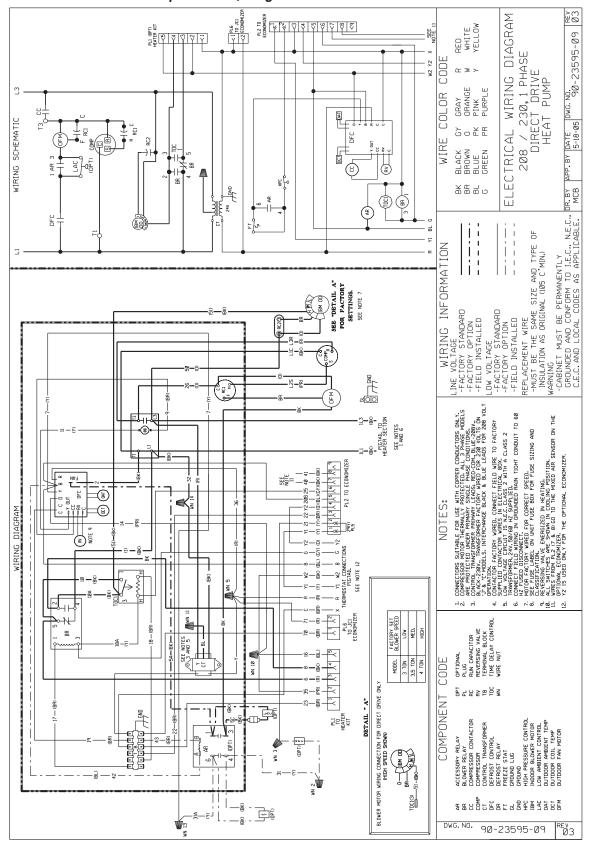


Figure 19: Direct-Drive Heat Pump 208/230V, 3 Phase

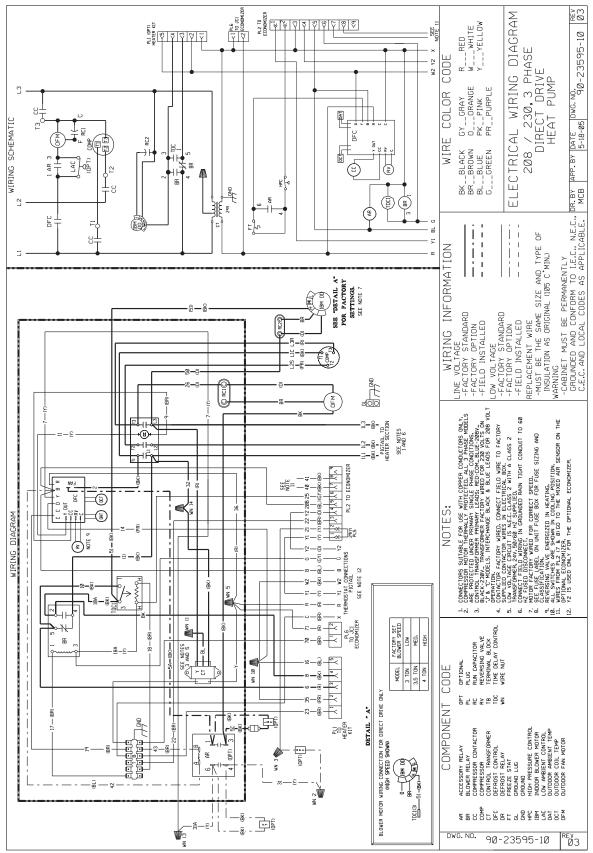


Figure 20: Direct-Drive Heat Pump 460V, 3 Phase

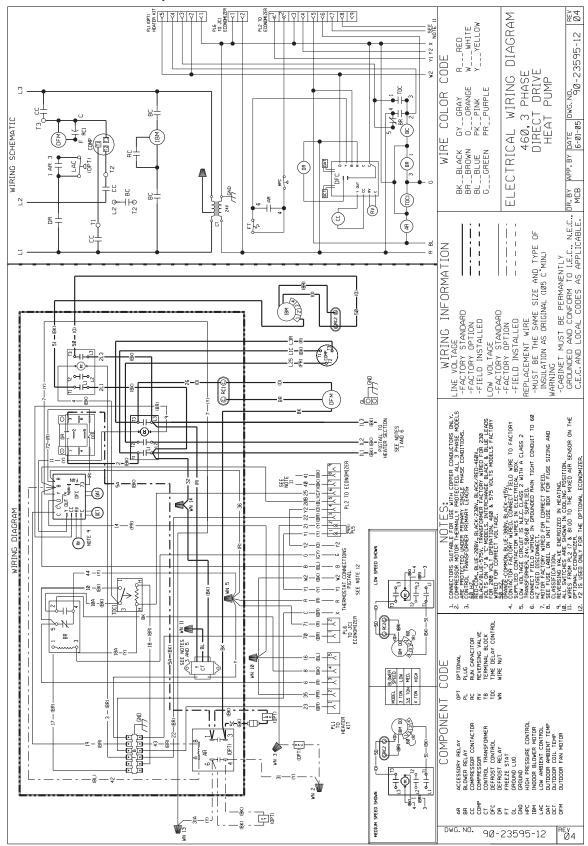


Figure 21: Direct-Drive Heat Pump 208/230V, Single Phase, X-Motor

Figure 22: Direct-Drive Heat Pump 208/230V, 3 Phase, X-Motor

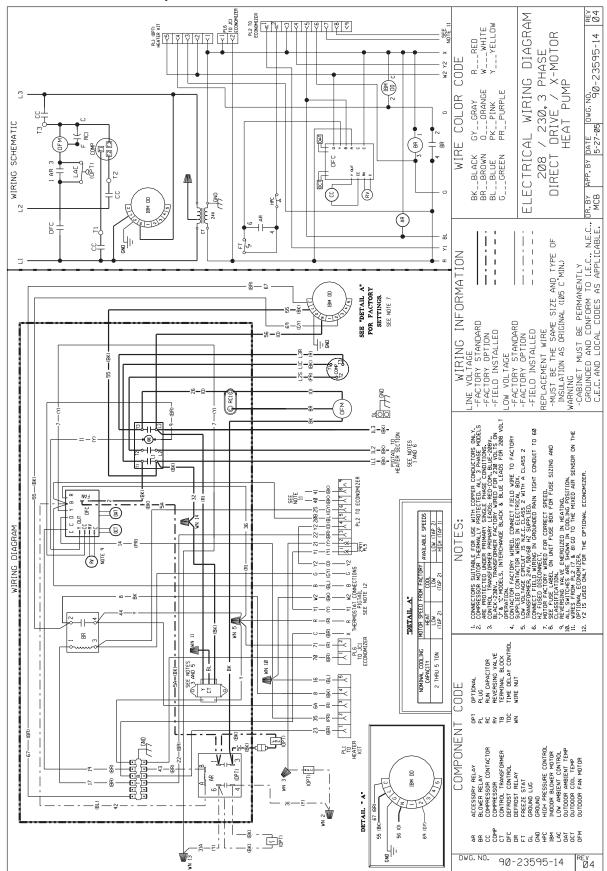


Figure 23: Direct-Drive Heat Pump 460V, 3 Phase, X-Motor

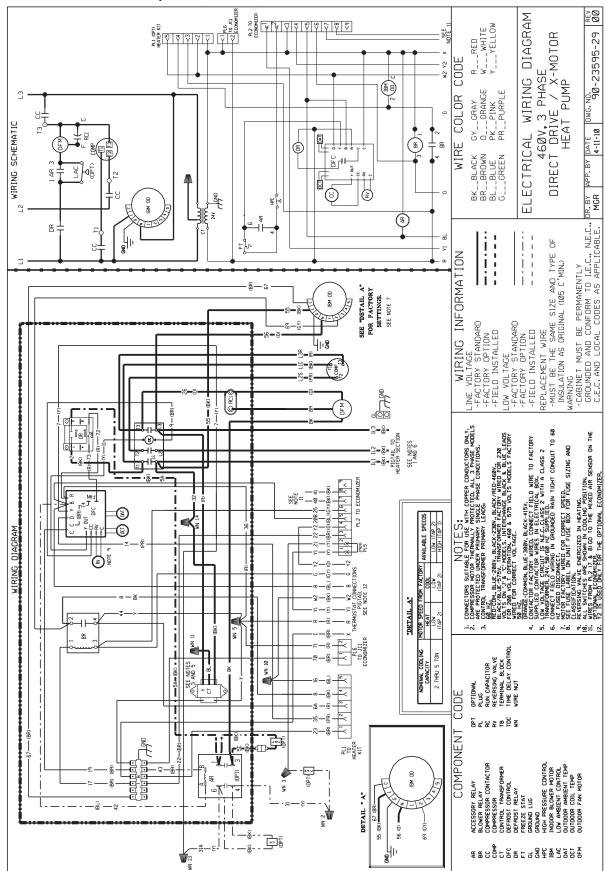


Figure 24: Belt-Drive Heat Pump, 003-005 Ton, 208/230V, 3 Phase

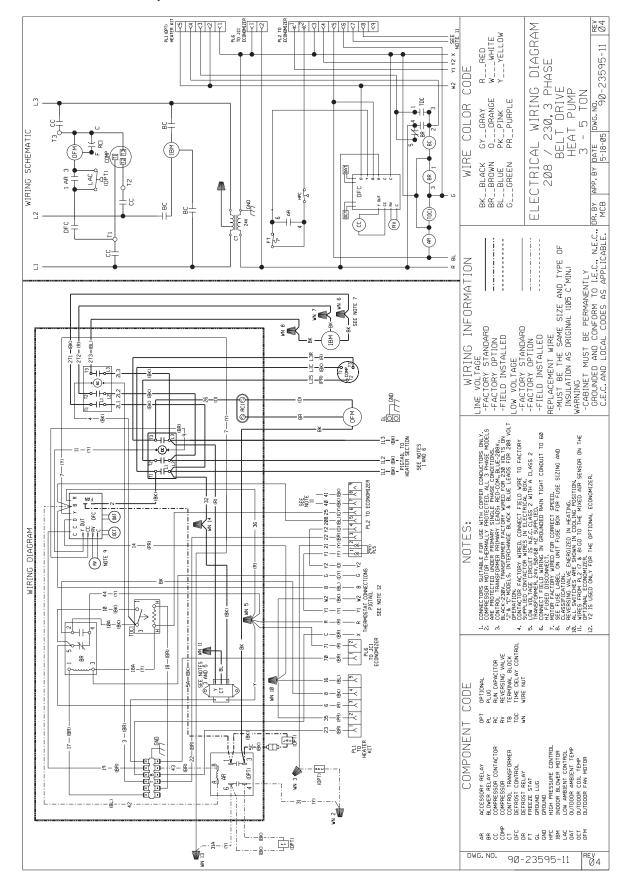


Figure 25: Belt-Drive Heat Pump, 003-005 Ton, 460V, 3 Phase

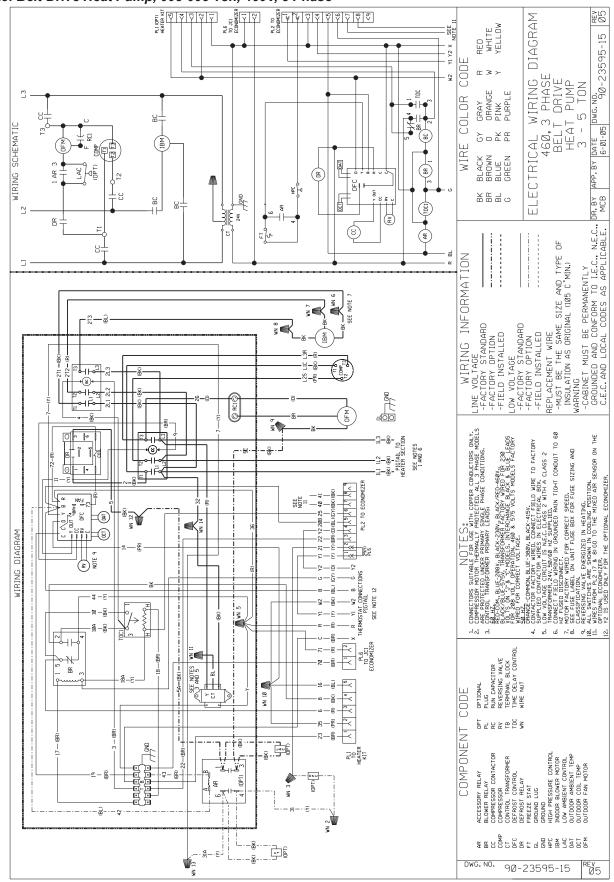
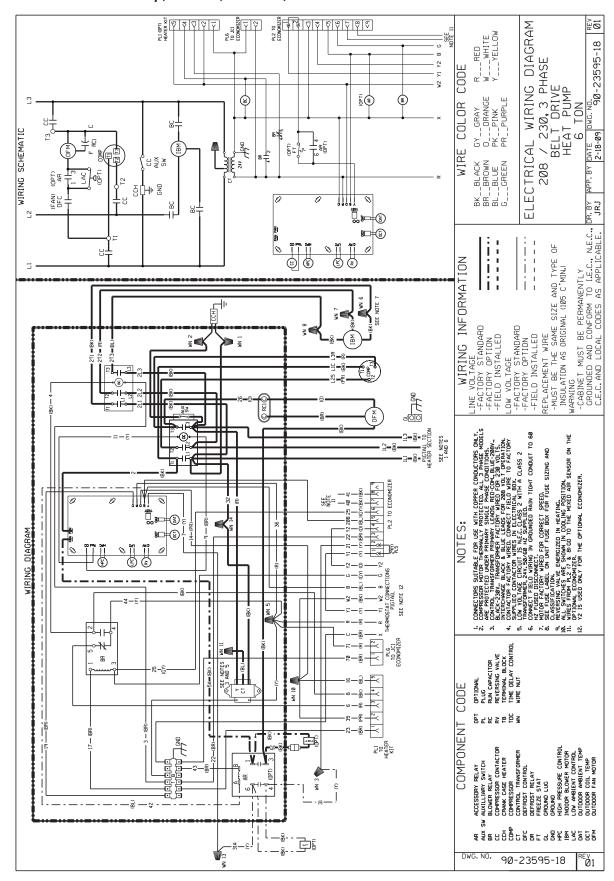
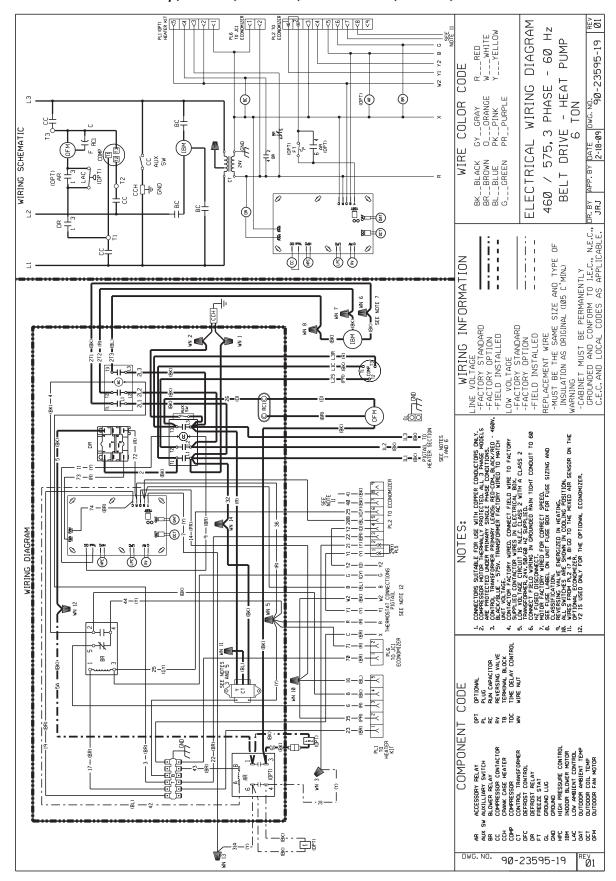
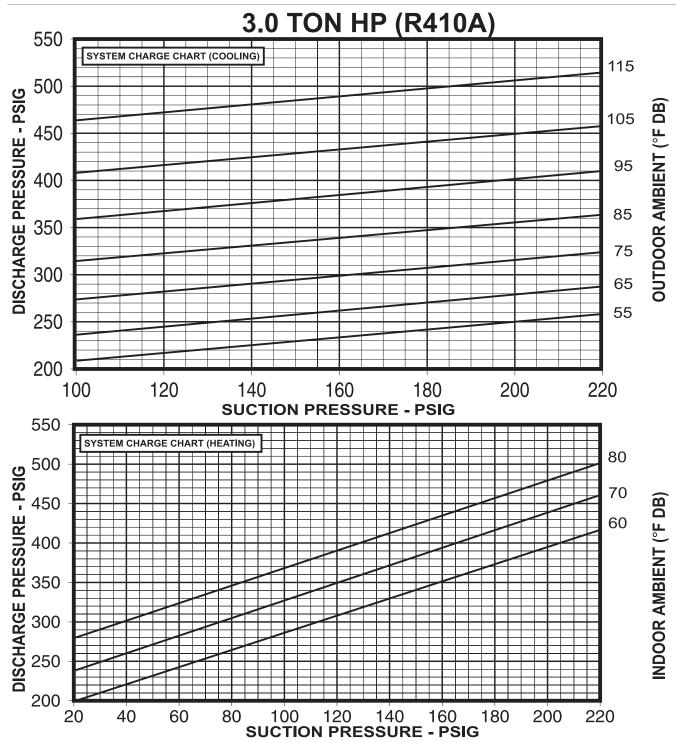
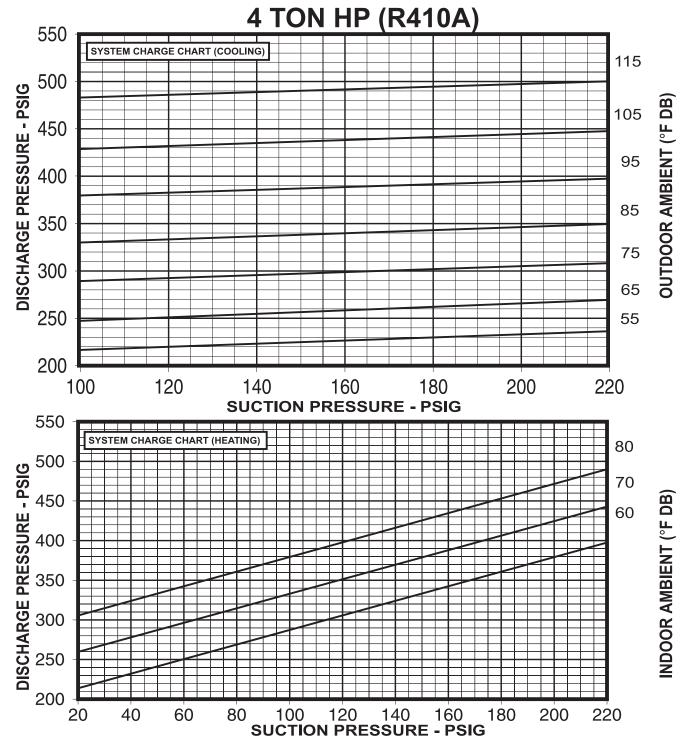
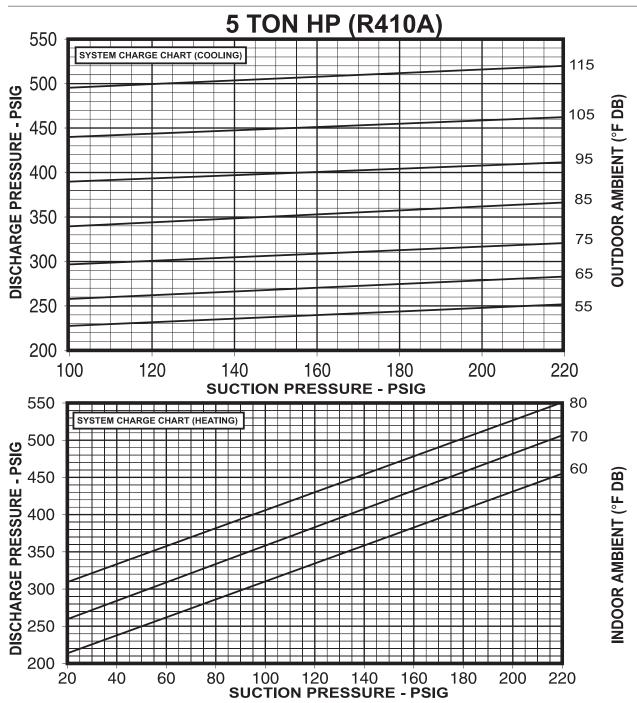


Figure 26: Belt-Drive Heat Pump, 006 Ton, 208/230V, 3 Phase


Figure 27: Belt-Drive Heat Pump, 006 Ton, 460/575V, 3 Phase-60 Hz, 380/415, 3 Phase-50 Hz

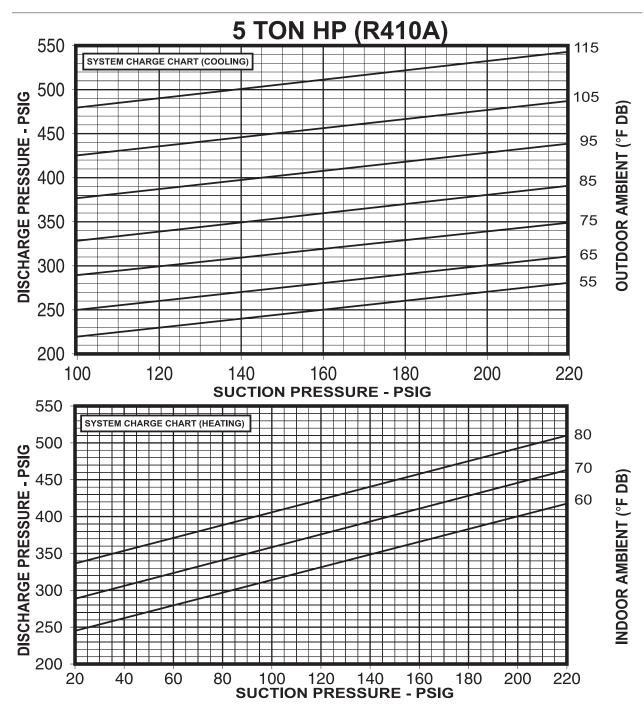
CAUTION: BEFORE FINAL REFRIGERANT CHECK, INDOOR RETURN AIR TEMPERATURE MUST BE BETWEEN 72°F & 76°F DB AT 50% R.H. (HEATING AND COOLING), AND NO ICE ON OUTDOOR COILS (HEATING).


- 1. CONNECT PRESSURE GAUGES TO SUCTION AND DISCHARGE PORTS ON UNIT.
- 2. MEASURE AIR TEMPERATURE TO: (a) OUTDOOR COIL FOR COOLING, (b) INDOOR COIL FOR HEATING.
- 3. PLACE AN "X" ON THE APPROPRIATE CHART WHERE THE SUCTION AND DISCHARGE PRESSURES CROSS.
- 4. IF "X" IS BELOW AMBIENT TEMPERATURE LINE, ADD CHARGE AND REPEAT STEP 3.
- 5. IF "X" IS ABOVE AMBIENT TEMPERATURE LINE, RECOVER EXCESS CHARGE AND REPEAT STEP 3. 92-102380-01-00

CAUTION: BEFORE FINAL REFRIGERANT CHECK, INDOOR RETURN AIR TEMPERATURE MUST BE BETWEEN 72°F & 76°F DB AT 50% R.H. (HEATING AND COOLING), AND NO ICE ON OUTDOOR COILS (HEATING).

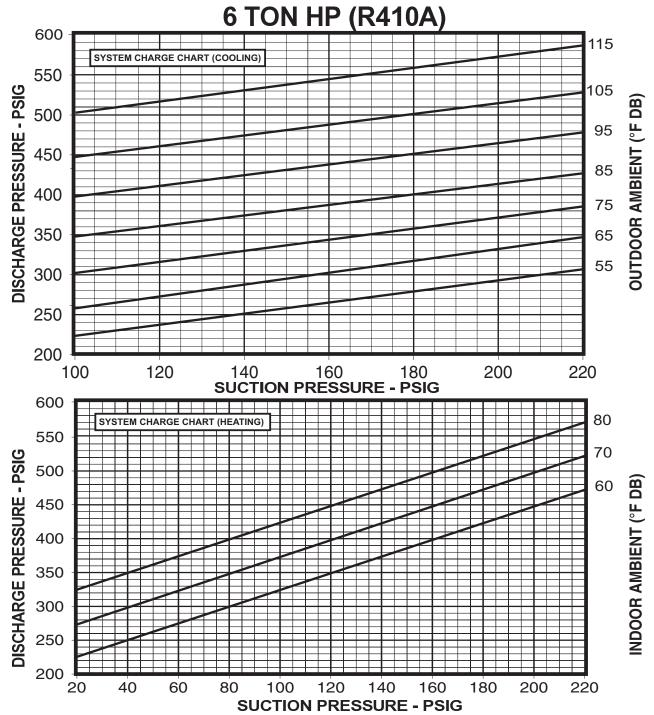
- 1. CONNECT PRESSURE GAUGES TO SUCTION AND DISCHARGE PORTS ON UNIT.
- 2. MEASURE AIR TEMPERATURE TO: (a) OUTDOOR COIL FOR COOLING, (b) INDOOR COIL FOR HEATING.
- 3. PLACE AN "X" ON THE APPROPRIATE CHART WHERE THE SUCTION AND DISCHARGE PRESSURES CROSS.
- 4. IF "X" IS BELOW AMBIENT TEMPERATURE LINE, ADD CHARGE AND REPEAT STEP 3.
- 5. IF "X" IS ABOVE AMBIENT TEMPERATURE LINE, RECOVER EXCESS CHARGE AND REPEAT STEP 3. 92-102380-03-00

5 TON - 13 SEER



CAUTION: BEFORE FINAL REFRIGERANT CHECK, INDOOR RETURN AIR TEMPERATURE MUST BE BETWEEN 72°F & 76°F DB AT 50% R.H. (HEATING AND COOLING), AND NO ICE ON OUTDOOR COILS (HEATING).

- 1. CONNECT PRESSURE GAUGES TO SUCTION AND DISCHARGE PORTS ON UNIT.
- 2. MEASURE AIR TEMPERATURE TO: (a) OUTDOOR COIL FOR COOLING, (b) INDOOR COIL FOR HEATING.
- 3. PLACE AN "X" ON THE APPROPRIATE CHART WHERE THE SUCTION AND DISCHARGE PRESSURES CROSS.
- 4. IF "X" IS BELOW AMBIENT TEMPERATURE LINE, ADD CHARGE AND REPEAT STEP 3.
- 5. IF "X" IS ABOVE AMBIENT TEMPERATURE LINE, RECOVER EXCESS CHARGE AND REPEAT STEP 3. 92-102380-04-00



5 TON - 14 SEER

CAUTION: BEFORE FINAL REFRIGERANT CHECK, INDOOR RETURN AIR TEMPERATURE MUST BE BETWEEN 72°F & 76°F DB AT 50% R.H. (HEATING AND COOLING), AND NO ICE ON OUTDOOR COILS (HEATING).

- 1. CONNECT PRESSURE GAUGES TO SUCTION AND DISCHARGE PORTS ON UNIT.
- 2. MEASURE AIR TEMPERATURE TO: (a) OUTDOOR COIL FOR COOLING, (b) INDOOR COIL FOR HEATING.
- 3. PLACE AN "X" ON THE APPROPRIATE CHART WHERE THE SUCTION AND DISCHARGE PRESSURES CROSS.
- 4. IF "X" IS BELOW AMBIENT TEMPERATURE LINE, ADD CHARGE AND REPEAT STEP 3.
- 5. IF "X" IS ABOVE AMBIENT TEMPERATURE LINE, RECOVER EXCESS CHARGE AND REPEAT STEP 3. 92-102380-05-00

CAUTION: BEFORE FINAL REFRIGERANT CHECK, INDOOR RETURN AIR TEMPERATURE MUST BE BETWEEN 72°F & 76°F DB AT 50% R.H. (HEATING AND COOLING), AND NO ICE ON OUTDOOR COILS (HEATING).
INSTRUCTIONS:

- 1. CONNECT PRESSURE GAUGES TO SUCTION AND DISCHARGE PORTS ON UNIT.
- 2. MEASURE AIR TEMPERATURE TO: (a) OUTDOOR COIL FOR COOLING, (b) INDOOR COIL FOR HEATING.
- 3. PLACE AN 'X' ON THE APPROPRIATE CHART WHERE THE SUCTION AND DISCHARGE PRESSURES CROSS.
- 4. IF 'X" IS BELOW AMBIENT TEMPERATURE LINE, ADD CHARGE AND REPEAT STEP 3.
- 5. IF "X" IS ABOVE AMBIENT TEMPERATURE LINE, RECOVER EXCESS CHARGE AND REPEAT STEP 3.

92-102380-06-00

▲ WARNING

DISCONNECT ALL POWER TO UNIT BEFORE SERVICING. CONTACTOR MAY BREAK ONLY ONE SIDE. FAILURE TO SHUT OFF POWER CAN CAUSE ELECTRICAL SHOCK RESULTING IN PERSONAL INJURY OR DEATH.

SYMPTOM	POSSIBLE CAUSE	REMEDY	
Unit will not run	Power off or loose electrical connection Thermostat out of calibration-set too high Defective contactor Blown fuses Transformer defective High pressure control open (if provided) Interconnecting low voltage wiring damaged	Check for correct voltage at compressor contactor in control box Reset Check for 24 volts at contactor coil - replace if contacts are open Replace fuses Check wiring-replace transformer Reset-also see high head pressure remedy- Replace thermostat wiring	
Condenser fan runs, compressor doesn't	Run capacitor defective (single phase only) Loose connection Compressor stuck, grounded or open motor winding, open internal overload. Low voltage condition Low voltage condition	Replace Check for correct voltage at compressor - check & tighten all connections Wait at least 2 hours for overload to reset. If still open, replace the compressor. At compressor terminals, voltage must be within 10% of rating Add start kit components	
Insufficient cooling	Improperly sized unit Improper airflow Incorrect refrigerant charge Air, non-condensibles or moisture in system Incorrect voltage	Recalculate load Check - should be approximately 400 CFM per ton. Charge per procedure attached to unit service panel Recover refrigerant, evacuate & recharge, add filter drier At compressor terminals, voltage must be within 10% of rating plate volts when unit is operating.	
Compressor short cycles	Incorrect voltage Defective overload protector Refrigerant undercharge	At compressor terminals, voltage must be ±10% of nameplate marking when unit is operating. Replace - check for correct voltage Add refrigerant	
Registers sweat	Low evaporator airflow	Increase speed of blower or reduce restriction - replace air filter	
High head-low vapor pressures	Restriction in liquid line, expansion device or filter drier Flow check piston size too small Incorrect capillary tubes TXV does not open	Remove or replace defective component Change to correct size piston Change coil assembly Replace TXV	
High head-high or normal vapor pressure - Cooling mode	Dirty condenser coil Refrigerant overcharge Condenser fan not running Air or non-condensibles in system	Clean coil Correct system charge Repair or replace Recover refrigerant, evacuate & recharge	
High head-high or normal vapor pressure - Heating mode	Low air flow - condenser coil Refrigerant overcharge Air or non-condensibles in system Dirty condenser coil	Check filters - correct to speed Correct system charge Recover refrigerant, evacuate & recharge Check filter - clean coil	
Low head-high vapor pressures	Defective Compressor valves	Replace compressor	
Low vapor - cool compressor - iced evaporator coil • Low evaporator airflow • Operating below 65°F outdoors • Moisture in system • TXV limiting refrigerant flow		Increase speed of blower or reduce restriction - replace air filter Add Low Ambient Kit Recover refrigerant - evacuate & recharge - add filter drier Replace TXV	
High vapor pressure	Excessive load Defective compressor	Recheck load calculation Replace	
Fluctuating head & vapor pressures	TXV hunting Air or non-condensate in system	Check TXV bulb clamp - check air distribution on coil - replace TXV Recover refrigerant, evacuate & recharge	
Gurgle or pulsing noise at expansion device or liquid line	Air or non-condensibles in system	Recover refrigerant, evacuate & recharge	

SEE DEMAND DEFROST CONTROL SECTION FOR DEFROST BOARD FLASH CODES (6 TON UNIT ONLY).

Daikin Applied Training and Development

Now that you have made an investment in modern, efficient Daikin equipment, its care should be a high priority. For training information on all Daikin HVAC products, please visit us at www.DaikinApplied.com and click on Training, or call 540-248-9646 and ask for the Training Department.

Warranty

All Daikin equipment is sold pursuant to its standard terms and conditions of sale, including Limited Product Warranty. Consult your local Daikin Applied representative for warranty details. To find your local Daikin Applied representative, go to www.DaikinApplied.com.

Aftermarket Services

To find your local parts office, visit www.DaikinApplied.com or call 800-37PARTS (800-377-2787). To find your local service office, visit www.DaikinApplied.com or call 800-432-1342.

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.DaikinApplied.com.

Products manufactured in an ISO Certified Facility.